Dietary niche variation and its relationship to lizard population density

Maria Novosolov | Gordon H. Rodda | Alison M. Gainsbury | Shai Meiri

1Department of Zoology, Tel Aviv University, Tel Aviv, Israel
2Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
3Department of Biological Sciences, University of South Florida, St. Petersburg, St. Petersburg, FL, USA

Correspondence
Maria Novosolov
E-mail: marianovosolov@gmail.com

Funding Information
Israel Science Foundation, Grant/Award Number: 1005/12; Clore Israel Foundation

Handling Editor: Mariano Rodriguez-Cabal

Abstract

1. Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities.

2. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth.

3. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated.

4. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations.

5. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors.

KEYWORDS
diet, lizards, niche breadth, niche variation hypothesis, population density

1 | INTRODUCTION

Insular populations undergo different levels of niche shift in adapting to their environment (Grant, 1998). A phenomenon whereby insular populations expand their niches through expansion of intra-population variation, usually thought to derive through release from interspecific competition, is often termed the "niche variation hypothesis" (Bolnick, Svanbäck, Araújo, & Persson, 2007; Soule & Stewart, 1970; Van Valen, 1965; although the term also have other, related meanings, see, e.g. Costa, Mesquita, Colli, & Vitt, 2008; Kavanagh & Burns, 2014). Insular species are hypothesized to have wider niches than mainland ones because they are, presumably, free to exploit resources that on the mainland would be used by their competitors (Dunham, Tinkle, & Gibbons, 1978; Soule & Stewart, 1970).

The niche variation hypothesis has received mixed support from many studies (reviewed in Bolnick et al., 2007; Costa et al., 2008; Meiri, Dayan, & Simberloff, 2005). Parent and Crespi (2009), for example, found the expected negative relationship between morphological
manifestations of niche and the number of competitors in land snails on the Galapagos Islands. Bolnick et al. (2010) found that niche breadth in freshwater fish increased following a release from interspecific competition. Meiri et al. (2005), however, found similar or even higher morphological variability in mainland settings, which they ascribed to the influence of gene flow. Kavanagh and Burns (2014) found no evidence for increased sexual size dimorphism (SSD) in island plants compared to mainland ones.

High population densities may indicate that a population is well adapted to its habitat and makes effective use of the available resources and in dealing with competition and predation (Kaspari, O’Donnell, & Kercher, 2000; MacArthur, Diamond, & Karr, 1972). Generalist species can make use of more resources, which allows them to divide the niche among individuals, or among males and females, facilitating increased population density (Angerbjorn, 1985; MacArthur et al., 1972; Van Valen, 1965). The relationship between population density and niche breadth may work both ways, species with high population density may experience higher intraspecific competition, forcing them to widen their niche (Bolnick & Svanback, 2007).

We tested whether dietary niches of island lizards are wider than those of mainland ones, reflecting the lower number of competitors on islands. In addition, we tested the hypothesis that niche breadth is positively correlated with population density (Van Valen, 1965). Lizards constitute an extremely variable group with a wide distribution across both islands and the mainland (Blackburn, 2006; Pianka, 1995). Although predominantly carnivorous, island lizards are known to often evolve herbivory, thereby increasing their dietary niches (Cooper & Vitt, 2002; Janzen, 1973; Meiri, 2008; Olesen & Valido, 2003). We hypothesized that insular lizard species would have broader dietary niches than mainland species due to decreased competition and predation. Moreover, we hypothesized that population density would be higher in species with broader dietary niches, especially on islands. This is because species with broader dietary niches can better exploit the different resources in their environment, thereby increasing population density (Bolnick et al., 2007).

2 | MATERIALS AND METHODS

2.1 | Data collection

We collected data from the primary literature on population density and diet for 59 mainland, and 36 insular species (localities in Figure 1; Data and sources in Appendix S1). We did not relate to whether the species was an island endemic as previous studies had shown no difference in population density between insular populations of endemic and non-endemic species (i.e. species that have both mainland and island populations; Novosolov et al., 2016).

For each species, we collected detailed dietary data (from the localities in Figure 1), which were divided into 44 categories based on what is commonly reported in the literature (Appendix S1; hereafter the “full” dataset). Thirty-nine categories referred to invertebrates (mainly arthropod orders), three categories to vegetation (“plant material,” “flowers,” and “fruit/seed”), one category of “non-identified,” and one category to “vertebrates” (studies usually combine all vertebrate remains found in the diet when reporting dietary components). This focus on invertebrates can potentially mask major niche expansion, such as the evolution of herbivory. To avoid potential bias towards the consumption of a varied invertebrate diet, we condensed the dataset (Appendix S1; hereafter the “clumped” dataset) by combining the dietary categories based on animal phyla—(1) Annelida, (2) Arthropoda, (3) Mollusca and (4) Chordata, and further included the (5) “non-identified” category, as well as the three plant categories (categories 6–8). Statistical analyses were performed on both datasets.

We aimed to study the relationship between population density and diet, thus we limited our data search to the 192 species for which we already had reliable population density data from a previous study (Novosolov et al., 2016). First, we searched for dietary data in the papers Novosolov et al. (2016) used to obtain density data. We then used Google Scholar to search for dietary data using the words “diet” or “dietary niche” coupled with the scientific name of the species (from the list of species we had density data for) to find the dietary contents of the species of interest. We used only sources that reported dietary categories which are commonly used in the literature.

FIGURE 1 Map showing the localities from which data on population density (orange circle) and diet (purple triangle) were collected [Colour figure can be viewed at wileyonlinelibrary.com]
For non-endemic island species, we used only data reported from an island population, to use these species as insular species in our study. We ended up with 94 species for which we had reliable dietary and population density data.

We used dietary data recorded from either stomach contents or faecal pellets. Faecal pellets are considered to be less reliable for dietary analysis (Pérez-Mellado, Pérez-Cembranos, Garrido, Luissell, & Corti, 2011) because the food undergoes further processing in the intestines. However, we found no differences in dietary niche breadth between data based on stomach content and those based on faecal material (Appendix S2), and therefore retain both types of data.

We calculated dietary niche breadth based on either the volumetric or numeric proportion of different prey categories, preferring volumetric proportions where both were reported. When volumetric proportions were not available, we used numeric proportions. To make sure our results are not biased by the type of proportion we used, we compared niche breadths calculated using the two methods. The differences in niche breadth was not significant (Appendix S2). To calculate our niche breadth, we used the inverse of Simpson’s (Simpson, 1949) diversity measure (Pianka, 1973):

\[
\text{Niche Breadth} = \frac{1}{\sum_{i=1}^{n} p_i^2}
\]

where \(p \) is the proportional use of each diet category \(i \). Niche breadth values range from 1 (exclusive use of a single diet category) to \(n \) (use of all diet categories). We set the minimum sample size (i.e. minimum number of stomachs used to quantify diet) to nine following Bolnick et al. (2003). An analysis with a minimum sample size of two gave similar results (Appendix S2), but we doubt whether such small sample sizes adequately characterize population-level niches. We found no correlation between sample size (the number of individuals analysed) and niche breadth (Appendix S2).

Population density is strongly and negatively correlated with the area over which density is estimated (Blackburn & Gaston, 1996; Novosolov et al., 2016). Thus, for each species, we recorded the size of the study area (hectare) for which the population density was estimated. For species for which we had density data for more than one population, we chose the population that was sampled over the largest area. To account for a potential effect of body size on population density (Damuth, 1981), we used estimated body mass (g) for each species from Feldman, Sabath, Pyron, Mayrose, and Meiri (2016).

Lizard richness was used as a proxy for competitor richness. The combined richness of birds, mammals and snakes (excluding species not eating lizards; i.e. vertebrate-eating carnivores such as members of the Falconiformes, Carnivora and Viperidae but not, e.g. herbivorous and insectivorous taxa such as Columbiformes, artiodactyls and scolecodphilians; see Novosolov et al., 2016) was used as a proxy for predator richness. Richness at the area where diet data were collected was calculated using ArcGIS 10.0 (distributed by ESRI) and distribution maps were generated by the GARD project (for lizards and snakes; http://www.gardinitiative.org/), IUCN (for mammals; http://www.iucnredlist.org/) and BirdLife (for bird; Only breeding ranges; BirdLife International & NatureServe, 2013). This was achieved by first identifying the equal area Behrmann projection \(1 \times 1^\circ \) grid cells that represent the localities, and then spatially joining the lizard, snake, mammal and bird species distribution maps with a Behrmann grid to assess species richness of each group in each cell. GIS distribution maps for lizards, snakes and mammals overestimate richness on small islands. Thus, for small islands in our dataset, we collected richness data of lizards, snakes and mammals from the literature.

2.2 Statistical analyses

All variables (except niche breadth) were log\(_{10}\) transformed to normalize the model’s residual distribution and reduce heteroscedasticity. All the analyses were repeated on both the “full” and the “clumped” datasets. We first used ANOVA to determine how dietary niche breadth and lizard species richness varied between islands and the mainland. We then used dietary niche breadth as a response variable in an ANCOVA to determine its relationship with competitor richness (i.e. lizard richness) and predator richness (see above) as a continuous predictor, and on islands vs. the mainland as a categorical predictor. Finally, we examined the relationship between population density (individual/ha) and dietary niche breadth accounting for insularity, study area (ha) and body mass (g), in an ANCOVA. For 15 species, out of the total 94, the dietary and population density data were from different localities. To make sure this does not introduce bias to our results, we ran sensitivity analyses by running all the models while excluding these species from the data. The sensitivity analyses showed no qualitative difference from the main analyses; thus, we used the complete species data in our models to increase the power of our results. The R code and results for the sensitivity analyses can be found in Appendix S2.

Because species traits are phylogenetically conserved, we accounted for phylogenetic non-independence by using a comprehensive phylogeny of squamates (Pyron & Burbrik, 2014), pruned to the species in our dataset. We repeated all analyses using phylogenetic generalized least square regression (Freckleton, Harvey, & Pagel, 2002). We corrected the branch lengths of the phylogenetic tree using the maximum likelihood value of the scaling parameter \(\lambda \) (Pagel, 1997) implemented in the R package Caper (Orme et al., 2014). We report the results of the phylogenetic models only when the \(\lambda \) value was significantly different from zero. All statistical analyses were done in R (R Core Team, 2016). The full \(\kappa \) code used in this study and the raw analytical output are reported in Appendix S2.

3 RESULTS

Island area in our data ranges between 0.04 \(\text{km}^2 \) and 151,215 \(\text{km}^2 \). Population density was higher on islands than on the mainland (islands: 2.78 ± 0.22, mainland: 1.68 ± 0.17, \(t = -6.64, p < .002 \)), corrected for body mass (slope: \(-0.377 \pm 0.094, t = -3.98, p < .002 \)), and study area (slope: \(-0.409 \pm 0.079, t = -5.16, p < .002 \)). The \(\lambda \) of the phylogenetic model was not significantly different from zero. Lizard richness and predator species richness were lower on
islands than on the mainland (back transformed from logarithm estimates: lizard richness—islands: 16 ± 1.15, mainland: 35 ± 1.21; t = 3.94; p < .002; predator richness—islands: 67 ± 1.31, mainland: 257 ± 1.17, t = 8.61, p < .002).

Dietary niche breadths were similar on islands and the mainland in the “full” dataset (phylogenetic model: islands: 4.26 ± 1.10, mainland: 4.76 ± 0.59; t = .85, p = .40; non-phylogenetic model: islands: 4.59 ± 0.43, mainland: 4.99 ± 0.54; t = .74, p = .46; Figure 2). In the “clumped” dataset island niche breadth was wider on islands than on the mainland (islands: 1.52 ± 0.08, mainland: 1.30 ± 0.11, t = −2.07, p = .04; λ was not significantly different from zero). Using the “full” and the “clumped” datasets, however, both models explained only ca 4% of the variation.

We found no significant relationship between dietary niche breadth and lizard species richness on either islands or the mainland, using either the “full” (intercept islands: 3.33 ± 0.92, mainland: 3.40 ± 0.58; t = 0.12, p = .91; slope = 1.04 ± 0.67, t = 1.56, p = .12, R² = 0.03; no interaction between species richness and insularity, p = .35); or the “clumped” dataset (intercept islands: 1.37 ± 0.18, mainland: 1.11 ± 0.11, t = −2.27, p = .03; slope = 0.12 ± 0.13, t = 0.91, p = .37, R² = 0.05; no interaction between species richness and insularity, p = .30; Figure 3). Moreover, we found no relationship between niche breadth and potential predator richness, using either the “full” (intercept islands: 2.59 ± 1.56, mainland: 2.35 ± 0.73, t = −0.33, p = .74; slope: 1.10 ± 0.82, t = 1.34, p = .18, R² = 0.02; no interaction between species richness and insularity, p = .78) or the “clumped” datasets (intercept islands: 1.66 ± 0.31, mainland: 1.48 ± 0.14, t = −1.23, p = .22; slope = −0.07 ± 0.16, t = −0.46, p = .64, R² = 0.04; no interaction between species richness and insularity, p = .16; Figure 4). λ was not significantly different from zero in any model.

Population density increases with the increase in dietary niche breadth in the “full” dataset (controlling for study area, mass intercept: islands: 1.84 ± 0.21, mainland: 0.81 ± 0.17, slope: 0.07 ± 0.03, t = 2.33, p = .02, R² = 0.56). There was no interaction between niche breadth and insularity. However, in the “clumped” dataset, population density and dietary niche breadth were uncorrelated (intercept: islands: 2.52 ± 0.31, mainland: 1.49 ± 0.18, slope −0.24 ± 0.18, t = −1.34, p = .18; Figure 5). There was no interaction between niche breadth and insularity after correcting for the effects of study area (full dataset: −0.43 ± 0.08, t = 5.30, R² < .002; clumped dataset: −0.44 ± 0.08, t = −5.43, p < .002) and body mass (full dataset: −0.64 ± 0.27, t = −2.36, p = .02; clumped dataset: −0.57 ± 0.30, t = −1.93, p = .06). Pagel’s λ was not significantly different from zero in any model. Using either the “full” or the “clumped” datasets, however, niche breadth explained no more than ca 4% of the variation.

4 | DISCUSSION

Our results show that insular lizard species have wider dietary niches than mainland ones only when accounting for their tendency to shift to herbivorous diet on islands. However, this pattern was statistically weak, explaining only c. 4% of the variation in niche breadth. In terms of animal prey taken, mainland and insular lizards have similar dietary niche breadths. Moreover, we did not find any relationship between

FIGURE 2 Comparison of dietary niche breadth in lizard species on islands and on the mainland (N = 94)

FIGURE 3 Relationship between dietary niche breadth and \(\log_{10} \) predator species richness on islands (black) and the mainland (grey). N = 35 and 59 species respectively

FIGURE 4 Relationship between dietary niche breadth and \(\log_{10} \) competitor species richness on islands (black) and the mainland (grey). N = 35 and 59 species respectively
lizard species richness and predator richness and niche breadth either on islands or on the mainland. Contrary to our expectations, population density and niche breadth were not correlated either in insular or among mainland species.

Species are thought to increase their niche breadth where interspecific competition is weak, as it is presumed to be on islands (Soule & Stewart, 1970; Van Valen, 1965). Niche breadth in our dataset was wider on islands than on the mainland but was unrelated to species richness. Moreover, the result explained only ca 4% of the variation in the data, making the result significant but weak. It is possible that insular species do not have the wider spectrum of resources that could enable them to expand their dietary niche. This hypothesis is reinforced by previous studies showing that islands may have lower resource availability (Ashmole, 1963) or that the available food sources on islands are often more restricted (Meiri et al., 2005).

Insular lizards are thought to often expand or shift their diets to include plant matter, perhaps to accommodate narrower invertebrate diversity or to substitute for invertebrates due to seasonal shortages (Janzen, 1973; Olesen & Valido, 2003; Pérez-Cembranos, León, & Pérez-Mellado, 2016). This expansion to include plant matter in the diet is supported by our results showing niche breadth to be wider on islands only when using the clumped dataset, which increases the weight given to plant matter when calculating dietary niche breadth. In other cases, insular species may increase their foraging time in order to compensate for scarce resources, utilize foods with low energetic values (Pérez-Cembranos et al., 2016) or digest more efficiently (Sagonas, Papilis, & Valakos, 2015). Alternatively, marine subsidies (Barrett et al., 2005; Brooke & Houston, 1983; Papilis, Meiri, Foufopoulos, & Valakos, 2009) may allow insular lizards to use otherwise unobtainable resources—but whether this will result in niche expansion, contraction or simply in niche shift, is unclear.

Population density is hypothesized to increase with increasing niche breadth (Van Valen, 1965). A population is hypothesized to be able to expand its niche by dividing it among individuals (i.e. with different individuals specializing in different dietary items) or by having each individual consume a wider range of food. Either will result in decreased intraspecific competition (Bolnick et al., 2007, 2010). This, in turn, can facilitate an increase in population density (Van Valen, 1965) which suggests that the higher population density on islands may be partially due to dietary niche expansion (MacArthur et al., 1972). The lack of relationship between niche breadth and insularity may indicate that adopting broader niches does not directly cause population density to increase on islands (MacArthur et al., 1972; Van Valen, 1965).

Despite their prominence in the ecological literature, our results do not support any of the three hypotheses we tested: we found that dietary niches are not wider on islands. Likewise, we identify no relationship between dietary niche breadth and population density, and between niche breadth and predator or competitor richness. Finally, niche breadth did not correlate with population density, species richness or predator richness and did not differ between islands and the mainland. Our results suggest that niche expansion does not stimulate decrease in intraspecific competition. Decreased intraspecific competition does not result in niche expansion. Although insular species often shift their dietary niches when adapting to insular environments, the depauperate nature of the islands does not in itself allow them to expand their dietary niches. We hypothesize that islands not only harbour fewer competitors but also fewer prey species, and thus dietary niches remain narrow on islands despite the lack of competitors.

ACKNOWLEDGEMENTS

Members of the Global Assessment of Reptile Distribution (GARD) group were instrumental in obtaining data on lizard distributions. Maria Novosolov is funded by the Clore Israel Foundation for the years 2015–2017. This study is funded by ISF grant number 1005/12 to S.M. A.G. is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

AUTHORS’ CONTRIBUTIONS

M.N. collected data and performed statistical analyses, G.H.R. collected data, A.G. collected data and S.M. collected data. M.N. wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

DATA ACCESSIBILITY

ORCID

Maria Novosolov http://orcid.org/0000-0002-4034-3441
Shai Meiri http://orcid.org/0000-0003-3839-6330
REFERENCES

DATA SOURCES

Appendix 1a

<table>
<thead>
<tr>
<th>binomial</th>
<th>what</th>
<th>distribution</th>
<th>island area (sq km)</th>
<th>population density (individuals/ha)</th>
<th>collection area</th>
<th>Latitude</th>
<th>Longitude</th>
<th>study area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthodactylus boskianus</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>2.83</td>
<td>Israel</td>
<td>30.788</td>
<td>35.24</td>
<td>6.00</td>
</tr>
<tr>
<td>Acanthodactylus scutellatus</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>39.67</td>
<td>Tunisia</td>
<td>33.29</td>
<td>10.8</td>
<td>0.50</td>
</tr>
<tr>
<td>Agama agama</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>93.90</td>
<td>Kanya</td>
<td>2.03333</td>
<td>36.066667</td>
<td>0.14</td>
</tr>
<tr>
<td>Algyroides fitzingeri</td>
<td>same</td>
<td>Island</td>
<td>24090.00</td>
<td>86.00</td>
<td>Sardinia</td>
<td>40.12</td>
<td>9.01</td>
<td>0.25</td>
</tr>
<tr>
<td>Amblyrhynchus cristatus</td>
<td>dif</td>
<td>Island</td>
<td>97</td>
<td>889.00</td>
<td>Fernandina island</td>
<td>-0.27</td>
<td>-91.44</td>
<td>0.01</td>
</tr>
<tr>
<td>Ameiva ameiva</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>4.62</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Ameiva chrysoalaema</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>144.00</td>
<td>Hispaniola</td>
<td>18.2</td>
<td>-71.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Ameiva exsul</td>
<td>same</td>
<td>Island</td>
<td>9104.00</td>
<td>400.00</td>
<td>Puerto Rico</td>
<td>18.13</td>
<td>-67.14</td>
<td>0.01</td>
</tr>
<tr>
<td>Anolis acutus</td>
<td>same</td>
<td>Island</td>
<td>348.50</td>
<td>460.00</td>
<td>Grenada</td>
<td>12.01</td>
<td>-61.78</td>
<td>0.05</td>
</tr>
<tr>
<td>Anolis aeneus</td>
<td>same</td>
<td>Island</td>
<td>348.50</td>
<td>4726.20</td>
<td>Grenada</td>
<td>11.99</td>
<td>-61.75</td>
<td>0.01</td>
</tr>
<tr>
<td>Anolis bahorucoensis</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>2323.75</td>
<td>Hispaniola</td>
<td>18.16</td>
<td>-71.41</td>
<td>0.04</td>
</tr>
<tr>
<td>Anolis Barkeri</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>169.50</td>
<td>Mexico</td>
<td>18.44</td>
<td>-95</td>
<td>4.70</td>
</tr>
<tr>
<td>Anolis brevirostris</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>800.00</td>
<td>Hispaniola</td>
<td>18.2</td>
<td>-71.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Anolis coelestinus</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>7600.00</td>
<td>Hispaniola</td>
<td>18.11</td>
<td>-71.41</td>
<td>0.01</td>
</tr>
<tr>
<td>Anolis cybotes</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>818.75</td>
<td>Hispaniola</td>
<td>18.16</td>
<td>-71.41</td>
<td>0.04</td>
</tr>
<tr>
<td>Anolis distichus</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>2795.00</td>
<td>Hispaniola</td>
<td>25.69</td>
<td>-79.27</td>
<td>0.01</td>
</tr>
<tr>
<td>Anolis fuscoauratus</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>18.08</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Anolis humilis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>13183.33</td>
<td>Costa Rica</td>
<td>10.43</td>
<td>-84</td>
<td>0.02</td>
</tr>
<tr>
<td>Anolis limifrons</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>160.00</td>
<td>Costa Rica</td>
<td>10.43</td>
<td>-84</td>
<td>0.06</td>
</tr>
<tr>
<td>Anolis lineatopus</td>
<td>same</td>
<td>Island</td>
<td>10911.00</td>
<td>470.58</td>
<td>Jamaica</td>
<td>18.02</td>
<td>-77.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Anolis oculatus</td>
<td>same</td>
<td>Island</td>
<td>751.00</td>
<td>3832.33</td>
<td>Dominica</td>
<td>15.56</td>
<td>-61.3</td>
<td>0.06</td>
</tr>
<tr>
<td>Anolis opalinus</td>
<td>same</td>
<td>Island</td>
<td>10911.00</td>
<td>429.41</td>
<td>Jamaica</td>
<td>18.02</td>
<td>-77.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Anolis polylepis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>230.00</td>
<td>Costa Rica</td>
<td>9.325</td>
<td>-83.86</td>
<td>0.08</td>
</tr>
<tr>
<td>Anolis punctatus</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>1.15</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Anolis richardii</td>
<td>same</td>
<td>Island</td>
<td>348.50</td>
<td>6790.00</td>
<td>Grenada</td>
<td>11.99</td>
<td>-61.75</td>
<td>0.01</td>
</tr>
<tr>
<td>binomial</td>
<td>what</td>
<td>distribution</td>
<td>island area (sq km)</td>
<td>population density (individuals/ha)</td>
<td>collection area</td>
<td>Latitude</td>
<td>Longitude</td>
<td>study area (ha)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Aspidoscelis sexlineata</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>22.00</td>
<td>Florida</td>
<td>28.083</td>
<td>-82.33</td>
<td>0.89</td>
</tr>
<tr>
<td>Aspidoscelis tigris</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>24.50</td>
<td>Arizona</td>
<td>33.34</td>
<td>-112.08</td>
<td>1.10</td>
</tr>
<tr>
<td>Brachylophus vitiensis</td>
<td>same</td>
<td>Island</td>
<td>0.70</td>
<td>142.86</td>
<td>Yadua Taba</td>
<td>-16.83</td>
<td>178.33</td>
<td>0.25</td>
</tr>
<tr>
<td>Cercosaura ocellata</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>0.38</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Chlamydosaurus kingii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>7.74</td>
<td>Brazil</td>
<td>-12.38</td>
<td>130.88</td>
<td>8.90</td>
</tr>
<tr>
<td>Cnemidophorus lemniscatus</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>80.00</td>
<td>Brazil</td>
<td>-21.51</td>
<td>-55</td>
<td>0.10</td>
</tr>
<tr>
<td>Coleodactylus natalensis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>98.50</td>
<td>Brazil</td>
<td>-5.83</td>
<td>-35.18</td>
<td>0.01</td>
</tr>
<tr>
<td>Ctenosaura pectinata</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>0.60</td>
<td>Mexico</td>
<td>16.1</td>
<td>97.15</td>
<td>0.20</td>
</tr>
<tr>
<td>Ctenotus leonhardii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>25.00</td>
<td>Australia</td>
<td>-23.971</td>
<td>133.89</td>
<td>0.30</td>
</tr>
<tr>
<td>Ctenotus pantherinus</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>56.00</td>
<td>Australia</td>
<td>-23.971</td>
<td>133.89</td>
<td>0.30</td>
</tr>
<tr>
<td>Ctenotus piankai</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>12.50</td>
<td>Australia</td>
<td>-23.98</td>
<td>133.94</td>
<td>0.10</td>
</tr>
<tr>
<td>Ctenotus quattuordecimlineatus</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>68.00</td>
<td>Australia</td>
<td>-23.971</td>
<td>133.89</td>
<td>0.30</td>
</tr>
<tr>
<td>Ctenotus taeniolatus</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>4.00</td>
<td>Australia</td>
<td>-16.5</td>
<td>145.2</td>
<td>1.00</td>
</tr>
<tr>
<td>Cyclura carinata</td>
<td>same</td>
<td>Island</td>
<td>417.00</td>
<td>19.18</td>
<td>Caicos</td>
<td>21.87</td>
<td>-72.08</td>
<td>0.90</td>
</tr>
<tr>
<td>Cyclura pinguis</td>
<td>same</td>
<td>Island</td>
<td>10911.00</td>
<td>0.36</td>
<td>Anegada</td>
<td>18.74</td>
<td>-64.37</td>
<td>12.50</td>
</tr>
<tr>
<td>Draco volans</td>
<td>same</td>
<td>Island</td>
<td>12706.00</td>
<td>66.35</td>
<td>Negros</td>
<td>9.3</td>
<td>123.28</td>
<td>25.00</td>
</tr>
<tr>
<td>Egernia kingii</td>
<td>same</td>
<td>Island</td>
<td>0.12</td>
<td>100.00</td>
<td>Penguin Island</td>
<td>-32.3</td>
<td>115.69</td>
<td>12.00</td>
</tr>
<tr>
<td>Emoia atrocostata</td>
<td>dif</td>
<td>Island</td>
<td>104688.00</td>
<td>144.98</td>
<td>Negros</td>
<td>9.481</td>
<td>123.181</td>
<td>3.59</td>
</tr>
<tr>
<td>Eremiascincus richardsonii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>69.50</td>
<td>Australia</td>
<td>-32.46</td>
<td>142.33</td>
<td>0.50</td>
</tr>
<tr>
<td>Eutropis multifasciata</td>
<td>same</td>
<td>Island</td>
<td>12706.00</td>
<td>25.76</td>
<td>Negros</td>
<td>9.3</td>
<td>123.28</td>
<td>25.00</td>
</tr>
<tr>
<td>Gallotia galloti</td>
<td>same</td>
<td>Island</td>
<td>2034.00</td>
<td>2321.20</td>
<td>Tenerife</td>
<td>28.3</td>
<td>-16.42</td>
<td>0.15</td>
</tr>
<tr>
<td>Gonatodes humeralis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>12.31</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Gymnodactylus darwinii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>20.00</td>
<td>Brazil</td>
<td>-22.55</td>
<td>-42.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Hellobolus spekii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>311.35</td>
<td>Kenya</td>
<td>2.03</td>
<td>36.06</td>
<td>0.14</td>
</tr>
<tr>
<td>Hemidactylus mabouia</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>20.00</td>
<td>Brazil</td>
<td>-22.55</td>
<td>-42.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Holbrookia propinqua</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>104.34</td>
<td>Texas</td>
<td>26.110148</td>
<td>-97.168057</td>
<td>0.37</td>
</tr>
<tr>
<td>Iberolacerta monticola</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>274.00</td>
<td>Spain</td>
<td>40.81</td>
<td>-3.96</td>
<td>1.00</td>
</tr>
<tr>
<td>Kentropyx pelviceps</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>5.77</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>binomial</td>
<td>what</td>
<td>distribution</td>
<td>island area (sq km)</td>
<td>population density (individuals/ha)</td>
<td>collection area</td>
<td>Latitude</td>
<td>Longitude</td>
<td>study area (ha)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Kentropyx striata</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>15.00</td>
<td>Brazil</td>
<td>-21.51</td>
<td>-55</td>
<td>0.10</td>
</tr>
<tr>
<td>Lamprolepis smaragdina</td>
<td>same</td>
<td>Island</td>
<td>12706.00</td>
<td>78.25</td>
<td>Negros</td>
<td>9.3</td>
<td>123.28</td>
<td>25.00</td>
</tr>
<tr>
<td>Leiocephalus schreibersii</td>
<td>same</td>
<td>Island</td>
<td>76192.00</td>
<td>143.00</td>
<td>Hispaniola</td>
<td>18.2</td>
<td>-71.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Leiolopisma telfairii</td>
<td>same</td>
<td>Island</td>
<td>1.53</td>
<td>5.64</td>
<td>Round Island</td>
<td>-19.85</td>
<td>57.78</td>
<td>6.75</td>
</tr>
<tr>
<td>Lepidoblepharis xanthostigma</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>91.67</td>
<td>Costa Rica</td>
<td>10.43</td>
<td>-84</td>
<td>0.06</td>
</tr>
<tr>
<td>Lygodactylus capensis</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>56.25</td>
<td>South Africa</td>
<td>-24.48</td>
<td>28.7</td>
<td>1.00</td>
</tr>
<tr>
<td>Mabuya mabouya</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>0.77</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Menetia greyii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>3.00</td>
<td>Australia</td>
<td>-32.11</td>
<td>115.89</td>
<td>1.00</td>
</tr>
<tr>
<td>Morethia boulengeri</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>783.25</td>
<td>Australia</td>
<td>-32.46</td>
<td>142.33</td>
<td>0.01</td>
</tr>
<tr>
<td>Oligosoma grande</td>
<td>same</td>
<td>Island</td>
<td>151215.00</td>
<td>58.50</td>
<td>South Island</td>
<td>-45.45</td>
<td>170.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Oligosoma maccanni</td>
<td>same</td>
<td>Island</td>
<td>151215.00</td>
<td>786.37</td>
<td>South Island</td>
<td>-45.85</td>
<td>169.77</td>
<td>0.04</td>
</tr>
<tr>
<td>Oligosoma nigriplantare</td>
<td>same</td>
<td>Island</td>
<td>145836.40</td>
<td>300.00</td>
<td>South Island</td>
<td>-43.83</td>
<td>172.68</td>
<td>0.02</td>
</tr>
<tr>
<td>Oligosoma otagense</td>
<td>same</td>
<td>Island</td>
<td>151215.00</td>
<td>22.00</td>
<td>South Island</td>
<td>-45.45</td>
<td>170.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Phrynosoma cornutum</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>0.55</td>
<td>Mexico</td>
<td>26.66</td>
<td>-103.66</td>
<td>1.00</td>
</tr>
<tr>
<td>Phrynosoma douglasii</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>99.50</td>
<td>Idaho</td>
<td>43.63</td>
<td>-112.75</td>
<td>1.00</td>
</tr>
<tr>
<td>Phrynosoma modestum</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>1.00</td>
<td>Mexico</td>
<td>26.66</td>
<td>-103.66</td>
<td>1.00</td>
</tr>
<tr>
<td>Phyllopezus policaris</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>4.56</td>
<td>Brazil</td>
<td>-7.1027</td>
<td>-36.845</td>
<td>0.14</td>
</tr>
<tr>
<td>Pinoscinclus jagori</td>
<td>dif</td>
<td>Island</td>
<td>104688.00</td>
<td>44.44</td>
<td>Negros</td>
<td>9.26</td>
<td>123.25</td>
<td>0.09</td>
</tr>
<tr>
<td>Plestiodon reynoldsi</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>387.50</td>
<td>Florida</td>
<td>28.45</td>
<td>-81.8</td>
<td>0.04</td>
</tr>
<tr>
<td>Plica plica</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>1.15</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Plica umbra</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>1.92</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Podarcis filfolensis</td>
<td>dif</td>
<td>Island</td>
<td>0.04</td>
<td>2000.00</td>
<td>Linosa</td>
<td>35.864709</td>
<td>12.86737</td>
<td>0.22</td>
</tr>
<tr>
<td>Podarcis gaigeae</td>
<td>same</td>
<td>Island</td>
<td>NA</td>
<td>584.00</td>
<td>Skyros</td>
<td>38.85</td>
<td>24.56</td>
<td>0.08</td>
</tr>
<tr>
<td>Podarcis raffoneae</td>
<td>same</td>
<td>Island</td>
<td>NA</td>
<td>2750.00</td>
<td>Scoglio Faraglione</td>
<td>38.58</td>
<td>14.8</td>
<td>0.00</td>
</tr>
<tr>
<td>Salvator merianae</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>0.63</td>
<td>Brazil</td>
<td>-19.16</td>
<td>-39.98</td>
<td>3.20</td>
</tr>
<tr>
<td>Sceloporus grammicus</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>107.25</td>
<td>Mexico</td>
<td>19.16</td>
<td>-98.6</td>
<td>2.50</td>
</tr>
<tr>
<td>Sceloporus magister</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>0.37</td>
<td>Arizona</td>
<td>32.26</td>
<td>-111.12</td>
<td>3.14</td>
</tr>
<tr>
<td>Sceloporus poinsettii</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>71.00</td>
<td>Texas</td>
<td>31.54</td>
<td>-100.88</td>
<td>1.00</td>
</tr>
<tr>
<td>binomial</td>
<td>what</td>
<td>distribution</td>
<td>island area (sq km)</td>
<td>population density (individuals/ha)</td>
<td>collection area</td>
<td>Latitude</td>
<td>Longitude</td>
<td>study area (ha)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Scincella lateralis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>405.00</td>
<td>Florida</td>
<td>29.64</td>
<td>-82.35</td>
<td>0.10</td>
</tr>
<tr>
<td>Sphaerodactylus vincenti</td>
<td>same</td>
<td>Island</td>
<td>389.00</td>
<td>2500.00</td>
<td>St. Vincent</td>
<td>13.21</td>
<td>-61.22</td>
<td>0.00</td>
</tr>
<tr>
<td>Stellagama stellio</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>24.00</td>
<td>Israel</td>
<td>30.69</td>
<td>34.78</td>
<td>4.50</td>
</tr>
<tr>
<td>Tenuidactylus caspius</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>3.76</td>
<td>Uzbek SSR</td>
<td>39.61</td>
<td>64.65</td>
<td>1.00</td>
</tr>
<tr>
<td>Trachylepis quinquetaeniata</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>2.00</td>
<td>Kenya</td>
<td>2.03</td>
<td>36.06</td>
<td>0.14</td>
</tr>
<tr>
<td>Tropidurus itambere</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>52.30</td>
<td>Brazil</td>
<td>-22.93</td>
<td>-46.55</td>
<td>1.72</td>
</tr>
<tr>
<td>Tropidurus torquatus</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>282.10</td>
<td>Brazil</td>
<td>-15.9</td>
<td>-47.93</td>
<td>0.31</td>
</tr>
<tr>
<td>Tupinambis teguixin</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>0.77</td>
<td>Brazil</td>
<td>-12.55</td>
<td>-69.05</td>
<td>2.60</td>
</tr>
<tr>
<td>Uma exsul</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>24.00</td>
<td>Mexico</td>
<td>26.66</td>
<td>-103.66</td>
<td>1.00</td>
</tr>
<tr>
<td>Uta stansburiana</td>
<td>dif</td>
<td>Mainland</td>
<td>NA</td>
<td>43.58</td>
<td>United States</td>
<td>36.66</td>
<td>-116.17</td>
<td>9.00</td>
</tr>
<tr>
<td>Varanus breviceuda</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>26.00</td>
<td>Australia</td>
<td>-23.971</td>
<td>133.89</td>
<td>0.30</td>
</tr>
<tr>
<td>Varanus tristis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>0.50</td>
<td>Australia</td>
<td>-16.5</td>
<td>145.2</td>
<td>1.00</td>
</tr>
<tr>
<td>Xenosaurus grandis</td>
<td>same</td>
<td>Mainland</td>
<td>NA</td>
<td>37.60</td>
<td>Mexico</td>
<td>18.86</td>
<td>-97.01</td>
<td>5.00</td>
</tr>
</tbody>
</table>
{APPENDIX 1b}

binomial sources for population density

Acanthodactylus boskianus Shai Meiri pers. Comm.
Anolis humilis Heinen, L.T. (1992). Comparisons of the leaf litter herpetofauna in abandoned cacao plantation and primary rain forest in Costa Rica:

Anolis lineatopus

Anolis oculatus

Brachylophus vitiensis

Ctenocephalus punctatus

Anolis punctatus

Aspidoscelis sexlineata

Aspidoscelis tigris

Brachylophus vitiensis

Cercosaura ocellata

Chlamydosaurus kingii

Cnemidophorus lemniscatus

Cnemidophorus lemniscatus

Cnemidophorus lemniscatus

Ctenosaura ocellata

binomial sources for population density

Leioplosima telfairii

Lepidoblepharis xanthostigma

Lygodactylus capensis

Mabuya mabouya

Menetia greyii

Morethia boulengeeri

Oligosoma grande

Oligosoma macmanni

Oligosoma nigriplantare

Phrynosoma cornutum

Phrynosoma douglassii

Phrynosoma modestum

Phylokepsus pollicaris

Pelloyscincus jagori

Pleistiodon reynoldsi

Plica plica

Plica umbra
binomial sources for population density

Podarcis gaigeae

Podarcis raffoneae

Salvator merianae

Sceloporus grammicus

Sceloporus poinsettii

Sceloporus grammicus

Scincella lateralis

Sphaerodactylus vincenti

Stellagama stellio

Tenuidactylus caspius

Trachylepis quinquetaeniata

Tropidurus itambere

Tropidurus torquatus

Tupinambis teguixin

Uma exsul

Uta stansburiana

Varanus brevicauda

Varanus tristis
<table>
<thead>
<tr>
<th>Binomial</th>
<th>Lizard richness</th>
<th>Predator richness</th>
<th>Maximum body mass (g)</th>
<th>Diet data origin</th>
<th>Diet data type</th>
<th>Number of stomachs</th>
<th>Niche breadth from clumped dataset</th>
<th>Niche breadth from full dataset</th>
<th>Diet data collection area</th>
<th>Diet Latitude</th>
<th>Diet Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthodactylus boskianus</td>
<td>14</td>
<td>29</td>
<td>1.293262359</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>33</td>
<td>1.00</td>
<td>1.78</td>
<td>Libya</td>
<td>23.32</td>
<td>20.60</td>
</tr>
<tr>
<td>Acanthodactylus scutellatus</td>
<td>18</td>
<td>29</td>
<td>1.15071525</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>89</td>
<td>1.01</td>
<td>1.28</td>
<td>Libya</td>
<td>23.68</td>
<td>16.81</td>
</tr>
<tr>
<td>Agama agama</td>
<td>21</td>
<td>309</td>
<td>2.070763359</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>21</td>
<td>1.10</td>
<td>1.64</td>
<td>Nigeria</td>
<td>9.44</td>
<td>12.54</td>
</tr>
<tr>
<td>Algyroides fitzingeri</td>
<td>9</td>
<td>91</td>
<td>0.335630128</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>40</td>
<td>1.39</td>
<td>4.44</td>
<td>Sardinia</td>
<td>40.12</td>
<td>9.01</td>
</tr>
<tr>
<td>Amblyrhynchus cristatus</td>
<td>2</td>
<td>38</td>
<td>3.869614816</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>48</td>
<td>1.00</td>
<td>1.00</td>
<td>Santa Fe</td>
<td>-0.83</td>
<td>-90.04</td>
</tr>
<tr>
<td>Ameiva ameiva</td>
<td>51</td>
<td>580</td>
<td>2.475102007</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>35</td>
<td>1.00</td>
<td>5.83</td>
<td>Brazil</td>
<td>-10.80</td>
<td>-65.37</td>
</tr>
<tr>
<td>Ameiva chrysoilaema</td>
<td>62</td>
<td>117</td>
<td>2.107813146</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>26</td>
<td>1.11</td>
<td>5.04</td>
<td>Hispaniola</td>
<td>17.83</td>
<td>-71.44</td>
</tr>
<tr>
<td>Anolis acutus</td>
<td>9</td>
<td>43</td>
<td>0.797840336</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>27</td>
<td>1.43</td>
<td>4.21</td>
<td>Grenada</td>
<td>12.01</td>
<td>-61.78</td>
</tr>
<tr>
<td>Anolis aeneus</td>
<td>9</td>
<td>49</td>
<td>1.024384351</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>167</td>
<td>1.17</td>
<td>7.41</td>
<td>Grenada</td>
<td>12.09</td>
<td>-61.74</td>
</tr>
<tr>
<td>Anolis bahoracensis</td>
<td>62</td>
<td>117</td>
<td>0.449253052</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>20</td>
<td>1.08</td>
<td>8.78</td>
<td>Hispaniola</td>
<td>18.16</td>
<td>-71.41</td>
</tr>
<tr>
<td>Anolis barkeri</td>
<td>30</td>
<td>377</td>
<td>1.322161537</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>33</td>
<td>1.13</td>
<td>7.47</td>
<td>Mexico</td>
<td>18.57</td>
<td>-95.07</td>
</tr>
<tr>
<td>Anolis brevirostris</td>
<td>62</td>
<td>117</td>
<td>0.500801788</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>19</td>
<td>1.00</td>
<td>1.81</td>
<td>Hispaniola</td>
<td>18.20</td>
<td>-71.08</td>
</tr>
<tr>
<td>Anolis coelestinus</td>
<td>62</td>
<td>117</td>
<td>1.086713734</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>24</td>
<td>1.92</td>
<td>9.58</td>
<td>Hispaniola</td>
<td>18.11</td>
<td>-71.41</td>
</tr>
<tr>
<td>Anolis cybotes</td>
<td>62</td>
<td>117</td>
<td>1.041830294</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>17</td>
<td>1.03</td>
<td>7.15</td>
<td>Hispaniola</td>
<td>18.16</td>
<td>-71.41</td>
</tr>
<tr>
<td>Anolis distichus</td>
<td>62</td>
<td>117</td>
<td>0.62234171</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>29</td>
<td>1.06</td>
<td>2.35</td>
<td>Hispaniola</td>
<td>18.16</td>
<td>-71.41</td>
</tr>
<tr>
<td>Anolis fuscoauratus</td>
<td>57</td>
<td>665</td>
<td>0.474059635</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>217</td>
<td>1.03</td>
<td>9.04</td>
<td>Ecuador</td>
<td>0.05</td>
<td>-76.98</td>
</tr>
<tr>
<td>Anolis humilis</td>
<td>17</td>
<td>556</td>
<td>0.423955216</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>19</td>
<td>1.00</td>
<td>3.61</td>
<td>Costa Rica</td>
<td>9.97</td>
<td>-83.43</td>
</tr>
<tr>
<td>Anolis limifrons</td>
<td>17</td>
<td>556</td>
<td>0.449253052</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>65</td>
<td>1.07</td>
<td>9.45</td>
<td>Costa Rica</td>
<td>9.97</td>
<td>-83.43</td>
</tr>
<tr>
<td>Anolis lineatopus</td>
<td>26</td>
<td>91</td>
<td>0.907407359</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>45</td>
<td>1.06</td>
<td>4.39</td>
<td>Jamaica</td>
<td>18.00</td>
<td>-76.76</td>
</tr>
<tr>
<td>Anolis oculatus</td>
<td>17</td>
<td>60</td>
<td>1.283641063</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>32</td>
<td>1.36</td>
<td>6.18</td>
<td>Dominica</td>
<td>15.56</td>
<td>-61.30</td>
</tr>
<tr>
<td>Anolis opalinus</td>
<td>26</td>
<td>104</td>
<td>0.568732491</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>340</td>
<td>1.04</td>
<td>5.60</td>
<td>Jamaica</td>
<td>18.03</td>
<td>-77.50</td>
</tr>
<tr>
<td>Anolis polylepis</td>
<td>49</td>
<td>497</td>
<td>0.644031517</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>22</td>
<td>1.08</td>
<td>7.01</td>
<td>Costa Rica</td>
<td>8.48</td>
<td>-83.60</td>
</tr>
<tr>
<td>binomial</td>
<td>lizard richness</td>
<td>predator richness</td>
<td>maximum body mass (g)</td>
<td>diet data origin</td>
<td>diet data type</td>
<td>number of stomachs</td>
<td>niche breadth from clumped dataset</td>
<td>niche breadth from full dataset</td>
<td>diet data collection area</td>
<td>Diet Latitude</td>
<td>Diet Longitude</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Anolis punctatus</td>
<td>55</td>
<td>665</td>
<td>1.202930084</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>63</td>
<td>1.09</td>
<td>6.82</td>
<td>Ecuador</td>
<td>0.05</td>
<td>-76.98</td>
</tr>
<tr>
<td>Anolis richardii</td>
<td>9</td>
<td>49</td>
<td>1.739292923</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>129</td>
<td>2.32</td>
<td>8.04</td>
<td>Grenada</td>
<td>12.09</td>
<td>-61.74</td>
</tr>
<tr>
<td>Aspidoscelis sexlineata</td>
<td>9</td>
<td>172</td>
<td>1.34561873</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>100</td>
<td>1.18</td>
<td>4.21</td>
<td>United States</td>
<td>35.36</td>
<td>-92.94</td>
</tr>
<tr>
<td>Aspidoscelis tigris</td>
<td>32</td>
<td>225</td>
<td>1.898200964</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>138</td>
<td>1.39</td>
<td>3.86</td>
<td>United States</td>
<td>34.41</td>
<td>-111.93</td>
</tr>
<tr>
<td>Brachylophus vitiensis</td>
<td>21</td>
<td>26</td>
<td>2.748813687</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>233</td>
<td>2.43</td>
<td>2.43</td>
<td>Yadua Taba</td>
<td>-16.82</td>
<td>178.30</td>
</tr>
<tr>
<td>Cercosaura ocellata</td>
<td>51</td>
<td>525</td>
<td>0.808239904</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>56</td>
<td>1.18</td>
<td>5.31</td>
<td>Brazil</td>
<td>-12.50</td>
<td>-60.82</td>
</tr>
<tr>
<td>Chlamydosaurus kingii</td>
<td>80</td>
<td>215</td>
<td>2.959745783</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>24</td>
<td>1.00</td>
<td>2.29</td>
<td>Australia</td>
<td>-12.72</td>
<td>132.43</td>
</tr>
<tr>
<td>Cnemidophorus lemniscatus</td>
<td>45</td>
<td>571</td>
<td>1.638073959</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>90</td>
<td>1.31</td>
<td>9.95</td>
<td>Brazil</td>
<td>2.83</td>
<td>-60.67</td>
</tr>
<tr>
<td>Coleoactylus natalensis</td>
<td>24</td>
<td>283</td>
<td>#REF!</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>49</td>
<td>1.14</td>
<td>8.90</td>
<td>Brazil</td>
<td>-5.80</td>
<td>-35.15</td>
</tr>
<tr>
<td>Ctenosaura pectinata</td>
<td>32</td>
<td>303</td>
<td>3.425605386</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>19</td>
<td>1.94</td>
<td>1.94</td>
<td>Mexico</td>
<td>18.60</td>
<td>-98.72</td>
</tr>
<tr>
<td>Ctenotus leonhardii</td>
<td>85</td>
<td>123</td>
<td>1.002437878</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>87</td>
<td>1.18</td>
<td>8.64</td>
<td>Australia</td>
<td>-23.00</td>
<td>134.88</td>
</tr>
<tr>
<td>Ctenotus pantherinus</td>
<td>85</td>
<td>123</td>
<td>1.65709649</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>86</td>
<td>1.40</td>
<td>6.39</td>
<td>Australia</td>
<td>-23.00</td>
<td>134.88</td>
</tr>
<tr>
<td>Ctenotus piankai</td>
<td>85</td>
<td>123</td>
<td>0.616650387</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>50</td>
<td>1.31</td>
<td>6.14</td>
<td>Australia</td>
<td>-23.00</td>
<td>134.88</td>
</tr>
<tr>
<td>Ctenotus quattuordecimlineatus</td>
<td>85</td>
<td>123</td>
<td>0.852713208</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>212</td>
<td>1.19</td>
<td>7.23</td>
<td>Australia</td>
<td>-23.00</td>
<td>134.88</td>
</tr>
<tr>
<td>Ctenotus taeniolatus</td>
<td>67</td>
<td>192</td>
<td>1.169580331</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>261</td>
<td>1.28</td>
<td>7.27</td>
<td>Australia</td>
<td>-26.42</td>
<td>149.03</td>
</tr>
<tr>
<td>Cyclura carinata</td>
<td>9</td>
<td>57</td>
<td>3.748898563</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>126</td>
<td>2.00</td>
<td>3.22</td>
<td>Caicos</td>
<td>21.88</td>
<td>-72.09</td>
</tr>
<tr>
<td>Cyclura pinguis</td>
<td>8</td>
<td>47</td>
<td>3.869614816</td>
<td>Faecal pallet</td>
<td>Volumetric proportion</td>
<td>27</td>
<td>2.19</td>
<td>2.19</td>
<td>Anegada</td>
<td>18.74</td>
<td>-64.37</td>
</tr>
<tr>
<td>Draco volans</td>
<td>65</td>
<td>219</td>
<td>0.927160598</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>181</td>
<td>1.32</td>
<td>1.63</td>
<td>Negroes Penguin Island</td>
<td>9.31</td>
<td>123.31</td>
</tr>
<tr>
<td>Egermia kingii</td>
<td>57</td>
<td>77</td>
<td>2.617948288</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>167</td>
<td>2.60</td>
<td>2.83</td>
<td>-32.34</td>
<td>117.85</td>
<td></td>
</tr>
<tr>
<td>Emoia atrocostata</td>
<td>49</td>
<td>190</td>
<td>1.333</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>318</td>
<td>1.03</td>
<td>2.07</td>
<td>Luzon</td>
<td>13.92</td>
<td>123.85</td>
</tr>
<tr>
<td>Eremiascincus richardsonii</td>
<td>92</td>
<td>126</td>
<td>1.668182215</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>22</td>
<td>1.16</td>
<td>6.52</td>
<td>Australia</td>
<td>-24.00</td>
<td>133.90</td>
</tr>
<tr>
<td>Eutropis multifasciata</td>
<td>49</td>
<td>219</td>
<td>1.804847427</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>133</td>
<td>1.76</td>
<td>7.81</td>
<td>Negroes</td>
<td>9.31</td>
<td>123.31</td>
</tr>
<tr>
<td>Gallota galloti</td>
<td>8</td>
<td>32</td>
<td>1.835196975</td>
<td>Faecal pallet</td>
<td>Volumetric proportion</td>
<td>20</td>
<td>1.51</td>
<td>5.94</td>
<td>Tenerife</td>
<td>28.35</td>
<td>-16.89</td>
</tr>
<tr>
<td>Gonatodes humeralis</td>
<td>52</td>
<td>513</td>
<td>0.407129009</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>42</td>
<td>1.10</td>
<td>10.28</td>
<td>Brazil</td>
<td>2.00</td>
<td>-62.83</td>
</tr>
<tr>
<td>Gymnodactylus darwinii</td>
<td>22</td>
<td>540</td>
<td>0.735325131</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>19</td>
<td>1.00</td>
<td>4.91</td>
<td>Brazil</td>
<td>-22.40</td>
<td>-42.73</td>
</tr>
<tr>
<td>binomial</td>
<td>lizard richness</td>
<td>predator richness</td>
<td>maximum body mass (g)</td>
<td>diet data origin</td>
<td>diet data type</td>
<td>number of stomachs</td>
<td>niche breadth from clumped dataset</td>
<td>niche breadth from full dataset</td>
<td>diet data collection area</td>
<td>Diet Latitude</td>
<td>Diet Longitude</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Heliobolus spekii</td>
<td>33</td>
<td>222</td>
<td>0.70432434</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>17</td>
<td>1.02</td>
<td>1.02</td>
<td>Kenya</td>
<td>2.90</td>
<td>39.70</td>
</tr>
<tr>
<td>Hemidactylus mabouia</td>
<td>30</td>
<td>328</td>
<td>1.154045266</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>53</td>
<td>1.08</td>
<td>4.27</td>
<td>Brazil United States</td>
<td>-8.61</td>
<td>-34.53</td>
</tr>
<tr>
<td>Holbrookia propinqua</td>
<td>25</td>
<td>202</td>
<td>0.943232553</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>28</td>
<td>1.20</td>
<td>5.06</td>
<td>Brazil</td>
<td>27.94</td>
<td>-98.20</td>
</tr>
<tr>
<td>Iberolacerta monticola</td>
<td>17</td>
<td>139</td>
<td>1.144669941</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>172</td>
<td>1.09</td>
<td>6.89</td>
<td>Spain</td>
<td>42.55</td>
<td>-7.04</td>
</tr>
<tr>
<td>Kentropyx pelviceps</td>
<td>48</td>
<td>569</td>
<td>1.827363826</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>15</td>
<td>1.05</td>
<td>2.36</td>
<td>Brazil</td>
<td>-8.33</td>
<td>-65.72</td>
</tr>
<tr>
<td>Kentropyx striata</td>
<td>45</td>
<td>571</td>
<td>1.795829572</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>433</td>
<td>1.41</td>
<td>7.37</td>
<td>Brazil</td>
<td>2.83</td>
<td>-60.67</td>
</tr>
<tr>
<td>Lampropelis smaragdina</td>
<td>49</td>
<td>219</td>
<td>1.541134847</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>176</td>
<td>1.68</td>
<td>7.78</td>
<td>Negros</td>
<td>9.31</td>
<td>123.31</td>
</tr>
<tr>
<td>Leiocephalus schreibersii</td>
<td>62</td>
<td>117</td>
<td>1.548291591</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>17</td>
<td>1.11</td>
<td>3.09</td>
<td>Hispaniola Round Island</td>
<td>18.20</td>
<td>-71.09</td>
</tr>
<tr>
<td>Leiolopisma telfairii</td>
<td>4</td>
<td>15</td>
<td>2.08534444</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>59</td>
<td>1.97</td>
<td>4.27</td>
<td>Brazil United States</td>
<td>-19.90</td>
<td>57.78</td>
</tr>
<tr>
<td>Lepidobolus xanthostigma</td>
<td>52</td>
<td>530</td>
<td>0.351045202</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>9</td>
<td>1.81</td>
<td>2.14</td>
<td>Costa Rica</td>
<td>11.05</td>
<td>-85.67</td>
</tr>
<tr>
<td>Lygodactylus capensis</td>
<td>42</td>
<td>387</td>
<td>0.268259793</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>22</td>
<td>1.02</td>
<td>1.30</td>
<td>Ecuador</td>
<td>0.05</td>
<td>-76.98</td>
</tr>
<tr>
<td>Mabuya mabouya</td>
<td>50</td>
<td>754</td>
<td>1.541134847</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>29</td>
<td>1.56</td>
<td>2.18</td>
<td>Ecuador</td>
<td>-25.30</td>
<td>133.16</td>
</tr>
<tr>
<td>Menetia greyii</td>
<td>91</td>
<td>109</td>
<td>0.048051712</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>44</td>
<td>1.18</td>
<td>4.02</td>
<td>Australia</td>
<td>-25.21</td>
<td>136.95</td>
</tr>
<tr>
<td>Morethia boulengeri</td>
<td>76</td>
<td>106</td>
<td>0.544719909</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>80</td>
<td>1.32</td>
<td>7.66</td>
<td>Australia South Island</td>
<td>-45.43</td>
<td>170.43</td>
</tr>
<tr>
<td>Oligosoma grande</td>
<td>9</td>
<td>37</td>
<td>1.565107002</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>167</td>
<td>2.09</td>
<td>3.72</td>
<td>South Island South Island</td>
<td>-43.83</td>
<td>172.68</td>
</tr>
<tr>
<td>Oligosoma maccanni</td>
<td>9</td>
<td>37</td>
<td>0.929572819</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>29</td>
<td>1.00</td>
<td>2.35</td>
<td>South Island South Island</td>
<td>-43.83</td>
<td>172.68</td>
</tr>
<tr>
<td>Oligosoma nigriplanta</td>
<td>9</td>
<td>37</td>
<td>1.304688998</td>
<td>Faecal pellet</td>
<td>Numeric proportion</td>
<td>10</td>
<td>1.55</td>
<td>4.73</td>
<td>South Island South Island</td>
<td>-43.83</td>
<td>172.68</td>
</tr>
<tr>
<td>Oligosoma otagense</td>
<td>9</td>
<td>37</td>
<td>1.732916949</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>78</td>
<td>2.20</td>
<td>4.01</td>
<td>South Island South Island</td>
<td>-45.43</td>
<td>170.43</td>
</tr>
<tr>
<td>Phrynosoma cornutum</td>
<td>27</td>
<td>203</td>
<td>1.804026354</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>10</td>
<td>1.07</td>
<td>2.11</td>
<td>Mexico United States</td>
<td>31.17</td>
<td>-106.22</td>
</tr>
<tr>
<td>Phrynosoma douglasii</td>
<td>8</td>
<td>168</td>
<td>1.758428105</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>42</td>
<td>1.01</td>
<td>3.26</td>
<td>Mexico United States</td>
<td>44.11</td>
<td>-118.38</td>
</tr>
<tr>
<td>Phrynosoma modestum</td>
<td>27</td>
<td>203</td>
<td>1.1008186</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>12</td>
<td>1.36</td>
<td>1.85</td>
<td>Brazil</td>
<td>31.17</td>
<td>-106.22</td>
</tr>
<tr>
<td>Phyllopozus pollicaris</td>
<td>42</td>
<td>378</td>
<td>1.342396018</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>24</td>
<td>1.40</td>
<td>8.16</td>
<td>Brazil</td>
<td>-10.67</td>
<td>-46.15</td>
</tr>
<tr>
<td>Pinocyclus jungori</td>
<td>49</td>
<td>190</td>
<td>1.47047633</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>363</td>
<td>1.05</td>
<td>1.50</td>
<td>Luzon United States</td>
<td>13.92</td>
<td>123.85</td>
</tr>
<tr>
<td>Plistiodon reynoldsi</td>
<td>14</td>
<td>159</td>
<td>0.728897229</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>14</td>
<td>1.00</td>
<td>1.80</td>
<td>United States</td>
<td>28.17</td>
<td>-81.92</td>
</tr>
<tr>
<td>binomial</td>
<td>lizard richness</td>
<td>predator richness</td>
<td>maximum body mass (g)</td>
<td>diet data origin</td>
<td>diet data type</td>
<td>number of stomachs</td>
<td>niche breadth from clumped dataset</td>
<td>niche breadth from full dataset</td>
<td>diet data collection are</td>
<td>Diet Latitude</td>
<td>Diet Longitude</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Plica plica</td>
<td>51</td>
<td>665</td>
<td>2.227489717</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>22</td>
<td>1.26</td>
<td>6.24</td>
<td>Ecuador</td>
<td>0.05</td>
<td>-76.98</td>
</tr>
<tr>
<td>Plica umbra</td>
<td>57</td>
<td>613</td>
<td>1.5533</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>12</td>
<td>1.00</td>
<td>1.18</td>
<td>Brazil</td>
<td>-2.88</td>
<td>-59.97</td>
</tr>
<tr>
<td>Podarcis filfolensis</td>
<td>2</td>
<td>19</td>
<td>1.16570493</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>23</td>
<td>1.22</td>
<td>4.11</td>
<td>Lampione Skyros Archipelago</td>
<td>35.55</td>
<td>12.31</td>
</tr>
<tr>
<td>Podarcis gaigeae</td>
<td>1</td>
<td>42</td>
<td>1.359</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>50</td>
<td>1.10</td>
<td>2.59</td>
<td>Scoglio Faraglone islet</td>
<td>36.69</td>
<td>24.39</td>
</tr>
<tr>
<td>Podarcis raffoneae</td>
<td>1</td>
<td>20</td>
<td>1.15071525</td>
<td>Faecal pallet</td>
<td>Numeric proportion</td>
<td>34</td>
<td>1.21</td>
<td>6.59</td>
<td>Saint Vincent</td>
<td>35.55</td>
<td>12.31</td>
</tr>
<tr>
<td>Sceloporus grammicus</td>
<td>25</td>
<td>309</td>
<td>1.254014396</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>25</td>
<td>1.30</td>
<td>6.19</td>
<td>Mexico</td>
<td>22.83</td>
<td>-104.08</td>
</tr>
<tr>
<td>Sceloporus magister</td>
<td>18</td>
<td>168</td>
<td>1.906675898</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>123</td>
<td>1.17</td>
<td>3.02</td>
<td>Mexico</td>
<td>28.37</td>
<td>-111.43</td>
</tr>
<tr>
<td>Sceloporus pointsettii</td>
<td>25</td>
<td>309</td>
<td>1.86500958</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>12</td>
<td>1.92</td>
<td>3.51</td>
<td>Mexico United States</td>
<td>23.83</td>
<td>-104.08</td>
</tr>
<tr>
<td>Scincella lateralis</td>
<td>9</td>
<td>151</td>
<td>0.593081146</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>142</td>
<td>1.09</td>
<td>9.99</td>
<td>United States</td>
<td>33.93</td>
<td>-89.09</td>
</tr>
<tr>
<td>Sphaerodactylus vincenti</td>
<td>14</td>
<td>45</td>
<td>0.199137556</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>40</td>
<td>1.08</td>
<td>3.54</td>
<td>Saint Vincent</td>
<td>13.21</td>
<td>-61.22</td>
</tr>
<tr>
<td>Stellagama stellio</td>
<td>17</td>
<td>142</td>
<td>2.52449091</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>91</td>
<td>1.01</td>
<td>3.05</td>
<td>Turkey</td>
<td>35.81</td>
<td>32.93</td>
</tr>
<tr>
<td>Tenuidactylus caspius</td>
<td>40</td>
<td>210</td>
<td>1.01279269</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>20</td>
<td>1.00</td>
<td>3.02</td>
<td>Iran</td>
<td>36.53</td>
<td>54.12</td>
</tr>
<tr>
<td>Trachylepis quinquetaeniata</td>
<td>14</td>
<td>201</td>
<td>1.910916563</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>10</td>
<td>1.06</td>
<td>1.14</td>
<td>Chad</td>
<td>12.95</td>
<td>17.15</td>
</tr>
<tr>
<td>Tropidurus itambere</td>
<td>40</td>
<td>424</td>
<td>1.492734938</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>244</td>
<td>1.11</td>
<td>4.63</td>
<td>Brazil</td>
<td>-15.85</td>
<td>-48.95</td>
</tr>
<tr>
<td>Tropidurus torquatus</td>
<td>30</td>
<td>499</td>
<td>1.898872526</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>29</td>
<td>2.45</td>
<td>5.14</td>
<td>Brazil</td>
<td>-22.95</td>
<td>-43.01</td>
</tr>
<tr>
<td>Tupinambis teguixin</td>
<td>45</td>
<td>571</td>
<td>3.646796713</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>51</td>
<td>1.66</td>
<td>3.36</td>
<td>Brazil</td>
<td>2.83</td>
<td>-60.67</td>
</tr>
<tr>
<td>Uma exsul</td>
<td>33</td>
<td>191</td>
<td>1.499</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>23</td>
<td>1.15</td>
<td>7.04</td>
<td>Mexico</td>
<td>25.38</td>
<td>-103.50</td>
</tr>
<tr>
<td>Uta stansburiana</td>
<td>13</td>
<td>145</td>
<td>1.195135671</td>
<td>Stomach contents</td>
<td>Volumetric proportion</td>
<td>556</td>
<td>1.33</td>
<td>6.39</td>
<td>Spain</td>
<td>40.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Varanus brevicauda</td>
<td>92</td>
<td>83</td>
<td>1.493698713</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>26</td>
<td>1.88</td>
<td>6.47</td>
<td>Australia</td>
<td>-28.20</td>
<td>123.58</td>
</tr>
<tr>
<td>Varanus tristis</td>
<td>92</td>
<td>83</td>
<td>2.73570998</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>75</td>
<td>2.52</td>
<td>3.92</td>
<td>Australia</td>
<td>-28.20</td>
<td>123.58</td>
</tr>
<tr>
<td>Xenosaurus grandis</td>
<td>32</td>
<td>423</td>
<td>1.752423751</td>
<td>Stomach contents</td>
<td>Numeric proportion</td>
<td>25</td>
<td>1.17</td>
<td>7.60</td>
<td>Mexico</td>
<td>18.87</td>
<td>-97.03</td>
</tr>
</tbody>
</table>
Appendix 1d

<table>
<thead>
<tr>
<th>Species</th>
<th>locality for density and diet</th>
<th>sources for dietary data</th>
</tr>
</thead>
</table>
Anolis polyrepsis same locality
Anolis punctatus different localities
Anolis richardi same locality
Aspidoscelis sexlineata same locality
Brachylophus vitiensis same locality
Cercosaura ocellata same locality
Chlamydosaurus kingii same locality
Cnemidophorus lenniscatus same locality
Coleodactylus natalensis same locality
Ctenosaura pectinata same locality
Ctenotus leonhardii same locality
Ctenotus pantherinus same locality
Ctenotus piankai same locality
Ctenotus quatuourdecimlineatus same locality
Ctenotus taeniolatus same locality
Cyclura carinata same locality
Cyclura pinguis same locality
Draco volans same locality
Egernia kingii same locality
Emoia atrocostata different localities
Eremiasiscuncus richardsonii same locality
Eutropis multifasciata same locality
Gallotia galloti same locality
Gonatodes humeralis same locality

Medica, P. A. (1967). Food Habits, Habitat Preference, Reproduction, And Diurnal Activity In Four Sympatric Species Of Whiptail Lizards (Cnemidophorus) In South Central Ne.

Medica, P. A. (1967). Food Habits, Habitat Preference, Reproduction, And Diurnal Activity In Four Sympatric Species Of Whiptail Lizards (Cnemidophorus) In South Central Ne.

Medica, P. A. (1967). Food Habits, Habitat Preference, Reproduction, And Diurnal Activity In Four Sympatric Species Of Whiptail Lizards (Cnemidophorus) In South Central Ne.

Medica, P. A. (1967). Food Habits, Habitat Preference, Reproduction, And Diurnal Activity In Four Sympatric Species Of Whiptail Lizards (Cnemidophorus) In South Central Ne.

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemidactylus mabouia</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Iberolacerta monticola</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Kentropyx pelviceps</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Kentropyx striata</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Lamprolepis smaragdina</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Leiolopisma telfairii</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Lepidoblepharis xanthostigma</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Mabuya mabouya</td>
<td>different localities</td>
<td></td>
</tr>
<tr>
<td>Morethia boulengeri</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Oligosoma maccanni</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Oligosoma nigripalantare</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Phrynosoma cornutum</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Phyllopezus pollicaris</td>
<td>same locality</td>
<td></td>
</tr>
<tr>
<td>Pinoyscincus jagori</td>
<td>different localities</td>
<td>Museum. Biological Sciences (Usa).</td>
</tr>
<tr>
<td>Plica plica</td>
<td>different localities</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Salvator merianae</td>
<td>same locality</td>
<td>Varanus tristis</td>
</tr>
<tr>
<td>Sceloporus grammicus</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Sceloporus magister</td>
<td>different localities</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Sceloporus poinsetti</td>
<td>different localities</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Scincella lateralis</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Sphaerodactylus vincenti</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Stellagama stelio</td>
<td>different localities</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Tenuidactylus caspius</td>
<td>different localities</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Trachylepis quinqueataeniata</td>
<td>different localities</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Tropidurus itambique</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Tropidurus torquatus</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Tupinambis teguixin</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Uma exsul</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Uta stansburiana</td>
<td>different localities</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Varanus brevicauda</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Varanus tristis</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
<tr>
<td>Xenosaurus grandis</td>
<td>same locality</td>
<td>Varanus brevicauda</td>
</tr>
</tbody>
</table>
Appendix 1e: competitors and predators sources

<table>
<thead>
<tr>
<th>Binomial</th>
<th>WorldID</th>
<th>Where</th>
<th>Island</th>
<th>Birds</th>
<th>Bird richness source</th>
<th>Snakes</th>
<th>Snake richness source</th>
<th>Mammals</th>
<th>Mammals richness source</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anolis acutus</td>
<td>32879</td>
<td>Island</td>
<td>Grenada</td>
<td>39</td>
<td>http://www.birdlife.org/</td>
<td>2</td>
<td>Kadison, A.E. (2014). Disassembling the assemblage: delving into the story of insular faunal body size. MSc Thesis. Tel Aviv University.</td>
<td>0</td>
<td>No know source for mammal numbers</td>
<td>41</td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Island</td>
<td>Source Location</td>
<td>Reference 1</td>
<td>Reference 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachylophus vitiensis</td>
<td>19799</td>
<td>Island</td>
<td>Yadua Taba</td>
<td>Paine, J.R. (1991) IUCN Directory of Protected Areas in Oceania. IUCN. 447p</td>
<td>No know source for mammal numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclura carinata</td>
<td>37548</td>
<td>Island</td>
<td>Caicos</td>
<td>Kadison, A.E. (2014). Disassembling the assemblage: delving into the story of insular faunal body size. MSc Thesis. Tel Aviv University.</td>
<td>No know source for mammal numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclura pinguis</td>
<td>36116</td>
<td>Island</td>
<td>Anegada</td>
<td>Kadison, A.E. (2014). Disassembling the assemblage: delving into the story of insular faunal body size. MSc Thesis. Tel Aviv University.</td>
<td>No know source for mammal numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draco volans</td>
<td>31984</td>
<td>Island</td>
<td>Negros</td>
<td>Kadison, A.E. (2014). Disassembling the assemblage: delving into the story of insular faunal body size. MSc Thesis. Tel Aviv University.</td>
<td>No know source for mammal numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egernia kingii</td>
<td>12898</td>
<td>Island</td>
<td>Pinguin Island</td>
<td>Pengo Island Information brochure</td>
<td>No know source for mammal numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eutropis multifasciata</td>
<td>31984</td>
<td>Island</td>
<td>Negros</td>
<td>http://www.gardinitiative.org/</td>
<td>http://www.iucnredlist.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallotia gottii</td>
<td>40484</td>
<td>Island</td>
<td>Tenerife</td>
<td>Gallotia gottii</td>
<td>Gallotia gottii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamprolepis smaragdina</td>
<td>31984</td>
<td>Island</td>
<td>Negros</td>
<td>Gallotia gottii</td>
<td>Gallotia gottii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiocephalus schreibersii</td>
<td>35749</td>
<td>Island</td>
<td>Hispaniola</td>
<td>Gallotia gottii</td>
<td>Gallotia gottii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosoma grande</td>
<td>7911</td>
<td>Island</td>
<td>South Island</td>
<td>Pinoyscincus jagori</td>
<td>Pinoyscincus jagori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosoma maccanni</td>
<td>8633</td>
<td>Island</td>
<td>South Island</td>
<td>Pinoyscincus jagori</td>
<td>Pinoyscincus jagori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosoma nigriplantare</td>
<td>8633</td>
<td>Island</td>
<td>South Island</td>
<td>Pinoyscincus jagori</td>
<td>Pinoyscincus jagori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosoma otagense</td>
<td>7911</td>
<td>Island</td>
<td>Luzon</td>
<td>Pinoyscincus jagori</td>
<td>Pinoyscincus jagori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinoyscincus jagori</td>
<td>34144</td>
<td>Island</td>
<td>Luzon</td>
<td>Pinoyscincus jagori</td>
<td>Pinoyscincus jagori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Location</td>
<td>Island/Region</td>
<td>SC</td>
<td>Website</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podarcis filfolensis</td>
<td>43393</td>
<td>Island</td>
<td>Lampione</td>
<td>19</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podarcis gaigeae</td>
<td>43765</td>
<td>Island</td>
<td>Skyros Archipelago</td>
<td>37</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podarcis raffoneae</td>
<td>43393</td>
<td>Island</td>
<td>Scoglio Faraglione islet</td>
<td>19</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podarcis tiliguerta</td>
<td>44829</td>
<td>Island</td>
<td>Sardinia</td>
<td>83</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerodactylus vincenti</td>
<td>33599</td>
<td>Island</td>
<td>Saint Vincent</td>
<td>37</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthodactylus boskianus</td>
<td>38361</td>
<td>Mainland</td>
<td>NA</td>
<td>10</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthodactylus scutellatus</td>
<td>38357</td>
<td>Mainland</td>
<td>NA</td>
<td>8</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agama agama</td>
<td>31873</td>
<td>Mainland</td>
<td>NA</td>
<td>154</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agama rueppelli</td>
<td>29743</td>
<td>Mainland</td>
<td>NA</td>
<td>116</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameiva ameiva</td>
<td>22075</td>
<td>Mainland</td>
<td>NA</td>
<td>296</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis barkeri</td>
<td>36085</td>
<td>Mainland</td>
<td>NA</td>
<td>195</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis fuscoauratus</td>
<td>27464</td>
<td>Mainland</td>
<td>NA</td>
<td>359</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis humilis</td>
<td>32137</td>
<td>Mainland</td>
<td>NA</td>
<td>264</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis limifrons</td>
<td>32137</td>
<td>Mainland</td>
<td>NA</td>
<td>264</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis ortonii</td>
<td>27464</td>
<td>Mainland</td>
<td>NA</td>
<td>359</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis polyplepis</td>
<td>31417</td>
<td>Mainland</td>
<td>NA</td>
<td>240</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anolis punctatus</td>
<td>27464</td>
<td>Mainland</td>
<td>NA</td>
<td>359</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspidoscelis sedineata</td>
<td>42928</td>
<td>Mainland</td>
<td>NA</td>
<td>84</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspidoscelis tigris</td>
<td>42549</td>
<td>Mainland</td>
<td>NA</td>
<td>103</td>
<td>http://www.birdlife.org/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Count</td>
<td>Region</td>
<td>Code</td>
<td>URL 1</td>
<td>URL 2</td>
<td>URL 3</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Habitat</td>
<td>Status</td>
<td>Parent 1</td>
<td>Parent 2</td>
<td>Parent 3</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
Appendix 1f: List of diet categories

<table>
<thead>
<tr>
<th>Full dataset</th>
<th>clumped dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblypygi Pooled</td>
<td>Annelida</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>Arthropoda</td>
</tr>
<tr>
<td>Annelida Pooled</td>
<td>Mollusca</td>
</tr>
<tr>
<td>Ants Pooled</td>
<td>Non identified Pooled</td>
</tr>
<tr>
<td>Aranae and Acari Pooled</td>
<td>Vertebrate Pooled (includes lizard shed skin and vertebrate egg)</td>
</tr>
<tr>
<td>Opiliones Pooled</td>
<td>Plant material Pooled</td>
</tr>
<tr>
<td>Chilopoda and Myriapoda Pooled</td>
<td>Flowers</td>
</tr>
<tr>
<td>Cockroaches Pooled</td>
<td>Fruits/seeds</td>
</tr>
<tr>
<td>Coleoptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Collembola Pooled</td>
<td></td>
</tr>
<tr>
<td>Crustaceans Pooled</td>
<td></td>
</tr>
<tr>
<td>Dermaptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Diplopoda Pooled</td>
<td></td>
</tr>
<tr>
<td>Diptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Embioptera</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Gastropoda Pooled</td>
<td></td>
</tr>
<tr>
<td>Hemiptera/Homoptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Hirudinea Pooled</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera (non ants) Pooled</td>
<td></td>
</tr>
<tr>
<td>Insect larvae and pupae Pooled</td>
<td></td>
</tr>
<tr>
<td>Insect egg Pooled</td>
<td></td>
</tr>
<tr>
<td>Isoptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Isopoda Pooled</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera Pooled</td>
<td></td>
</tr>
<tr>
<td>Mantodea Pooled</td>
<td></td>
</tr>
</tbody>
</table>
Mollusca Pooled
Microcoryphia Individual
Neuroptera Pooled
Non identified Pooled
Odonata Pooled
Oligochaeta Pooled
Orthoptera Pooled
Phasmida Pooled
Plant material Pooled
Flowers
Fruits/seeds
Plecoptera Pooled
Pseudoscorpionidae Pooled
Scorpionida Pooled
Solifuga Pooled
Thysanura Pooled
Tricoptera Pooled
Vertebrate Pooled (includes lizard shed skin and vertebrate egg)
Niche variation hypothesis and its relationship to lizard population density

This is the R code used to test the niche variation hypothesis in lizards using dietary niche data and looking at its relationship to population density and lizard and predator richness on both island and the mainland.

Sensitivity analysis

In these analyses we are testing a few things to make sure our data does not give a bias based on skewed collection of the data. We include diet data type, diet data origin and number of stomach used in the analysis.

Stomach number

preanalysis tests
dietary data type
model.type<- lm(niche_breadth_full~diet_data_type, diet.data)
summary(model.type)

##
Call:
lm(formula = niche_breadth_full ~ diet_data_type, data = diet.data)
##
Residuals:
Min 1Q Median 3Q Max
##-3.9494 -2.2696 -0.4096 2.1355 5.5404
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7396 0.3813 12.43 <2e-16
diet_data_typeVolumetric_proportion_ 0.2098 0.5281 0.397 0.692
##
(Intercept) ***
diet_data_typeVolumetric_proportion_ ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2.558 on 92 degrees of freedom
Multiple R-squared: 0.001713, Adjusted R-squared: -0.009138
F-statistic: 0.1579 on 1 and 92 DF, p-value: 0.6921

model.origin<- lm(niche_breadth_full~diet_data_origin,diet.data)
summary(model.origin)

##
Call:
lm(formula = niche_breadth_full ~ diet_data_origin, data = diet.data)
Test if using only species with stomach number larger than 8 give different results than if using all the data

Subset the data

```r
sub.diet.data <- diet.data
sub.diet.data <- subset(diet.data, number_of_stomachs > 8)
comp.sub.diet <- comparative.data(phy = diet.tree, data = sub.diet.data, names.col = binomial, vcv.dim = 3, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)
```

Warning in comparative.data(phy = diet.tree, data = sub.diet.data, names.col = binomial, vcv.dim = 3, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)

```r
# Warning in comparative.data(phy = diet.tree, data = sub.diet.data, names.col = binomial, vcv.dim = 3, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)
```
Discriptive statistics

```r
min(sub.diet.data$island_area, na.rm = T)
## [1] 0.04
```

```r
max(sub.diet.data$island_area, na.rm = T)
## [1] 151215
```

```r
ddply(sub.diet.data, .(distribution), summarize, count_species = length(binomial))
##   distribution count_species
## 1       Island            35
## 2     Mainland            59
```

Sensitivity analysis - exclude different locations

```r
# create the dataset without the species for which data was from different locations
sub.local.data <- subset(sub.diet.data, what == "same")
comp.sub.local.data <- comparative.data(phy = diet.tree, data = sub.local.data, names.col = binomial, vcv.dim = 3, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)
```

```r
# Warning in comparative.data(phy = diet.tree, data = sub.local.data, names.col = binomial, : Data dropped in compiling comparative data object
```

```r
length(sub.local.data$binomial)
## [1] 76
```

Run the models on this data

full dataset

non-phylogenetic

```r
model.sub1 <- lm(niche_breadth_full ~ distribution, sub.local.data)
summary(model.sub1)
```

```r
# Call:
# lm(formula = niche_breadth_full ~ distribution, data = sub.local.data)
#
# Residuals:
#     Min  1Q Median  3Q  Max
# -4.4162 -1.8886 -0.3362  1.8588  4.8438
#```

```r
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9058 0.4427 11.081 <2e-16 ***
distributionMainland 0.5304 0.5753 0.922 0.36

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.465 on 74 degrees of freedom
```
## Multiple R-squared: 0.01135, Adjusted R-squared: -0.002005
## F-statistic: 0.8499 on 1 and 74 DF, p-value: 0.3596

```r
phylogenetic
model.sub1.phy <- pglsl(niche_breadth_full ~ distribution, comp.sub.local.data, lambda = "ML")
summary(model.sub1.phy)
```

```r
Call:
pglsl(formula = niche_breadth_full ~ distribution, data = comp.sub.local.data,
lambda = "ML")
##
Residuals:
Min 1Q Median 3Q Max
-0.71868 -0.12833 -0.02248 0.15383 0.57687
##
Branch length transformations:
##
kappa [Fix] : 1.000
lambda [ML] : 0.556
lower bound : 0.000, p = 0.34353
upper bound : 1.000, p = 0.030488
95.0% CI : (NA, 0.992)
delta [Fix] : 1.000
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.82318 0.91670 5.2615 1.342e-06 ***
distributionMainland 0.44285 0.63291 0.6997 0.4863
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.218 on 74 degrees of freedom
Multiple R-squared: 0.006573, Adjusted R-squared: -0.006852
F-statistic: 0.4896 on 1 and 74 DF, p-value: 0.4863
```

# clumped dataset
# non-phylogenetic

```r
model.sub1.1 <- lm(niche_breadth_clumped ~ distribution, sub.local.data)
summary(model.sub1.1)
```

```r
Call:
lm(formula = niche_breadth_clumped ~ distribution, data = sub.local.data)
##
Residuals:
Min 1Q Median 3Q Max
-0.57742 -0.32761 -0.16011 0.08181 2.37489
##
```
## Coefficients:
|                      | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept)          | 1.57742  | 0.09511    | 16.59   | <2e-16 *** |
| distributionMainland | -0.24231 | 0.12360    | -1.96   | 0.0537 . |

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5295 on 74 degrees of freedom
Multiple R-squared:  0.04937, Adjusted R-squared:  0.03653
F-statistic: 3.843 on 1 and 74 DF,  p-value: 0.05371

# Phylogenetic

```r
model.sub1.phy <- pgls(niche_breadth_clumped ~ distribution, comp.sub.local.data, lambda = "ML")
summary(model.sub1.phy)
```

## Call:
pgls(formula = niche_breadth_clumped ~ distribution, data = comp.sub.local.data, lambda = "ML")

## Residuals:
```
Min 1Q Median 3Q Max
-0.117932 -0.028514 -0.002409 0.028606 0.094319
```

Branch length transformations:
```
| kappa [Fix] | 1.000 |
| lambda [ML] | 0.431 |
| lower bound | 0.000, p = 0.072442 |
| upper bound | 1.000, p = 1.5943e-08 |
| 95.0% CI | (NA, 0.764) |
| delta [Fix] | 1.000 |
```

## Coefficients:
```
| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept) | 1.64956 | 0.17260 | 9.5573 | 1.488e-14 *** |
| distributionMainland | -0.32248 | 0.13143 | -2.4537 | 0.01649 * |
```

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04375 on 74 degrees of freedom
Multiple R-squared:  0.07524, Adjusted R-squared:  0.06274
F-statistic: 6.021 on 1 and 74 DF,  p-value: 0.01649

# Non-phylogenetic

```r
model.d <- lm(log_population_density ~ distribution + log_study_area + log_mass, sub.local.data)
summary(model.d)
```
## Call:
`lm(formula = log_population_density ~ distribution + log_study_area +
    log_mass, data = sub.local.data)`

## Residuals:
```
 Min 1Q Median 3Q Max
-1.68549 -0.51239 0.05699 0.58107 1.87155
```

## Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.14534 0.16884 12.707 < 2e-16 ***
distributionMainland -0.91555 0.18987 -4.822 7.69e-06 ***
log_study_area -0.44693 0.09005 -4.963 4.49e-06 ***
log_mass -0.69467 0.30844 -2.252 0.0274 *
```

---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 0.7902 on 72 degrees of freedom
## Multiple R-squared:  0.5235, Adjusted R-squared:  0.5037
## F-statistic: 26.37 on 3 and 72 DF,  p-value: 1.286e-11

#phylogenetic
model.d.phy<- `pgls(formula = log_population_density ~ distribution + log_study_area +
    log_mass, data = comp.sub.local.data, lambda = "ML")`
```
summary(model.d.phy)
```

## Call:
`pgls(formula = log_population_density ~ distribution + log_study_area +
    log_mass, data = comp.sub.local.data, lambda = "ML")`

## Residuals:
```
 Min 1Q Median 3Q Max
-0.13764 -0.02938 0.02141 0.04839 0.17731
```

## Branch length transformations:
```
 kappa [Fix] : 1.000
 lambda [ML] : 0.441
 lower bound : 0.000, p = 0.067711
 upper bound : 1.000, p = 7.4082e-06
 95.0% CI : (NA, 0.819)
 delta [Fix] : 1.000
```

## Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.899129 0.275844 6.8848 1.802e-09 ***
distributionMainland -0.706889 0.203526 -3.4732 0.0008742 ***
log_study_area -0.450699 0.088326 -5.1027 2.621e-06 ***
```
### log_mass
-0.416280  0.319047 -1.3048  0.1961301
---
### Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Residual standard error: 0.06548 on 72 degrees of freedom
### Multiple R-squared: 0.4174,  Adjusted R-squared: 0.3931
### F-statistic: 17.19 on 3 and 72 DF,  p-value: 1.609e-08

#full dataset

#non-phylogenetic

model.sub3<-  lm(niche_breadth_full~log10(lizard_richness)*distribution,sub.local.data)
summary(model.sub3)

## Call:
## lm(formula = niche_breadth_full ~ log10(lizard_richness) * distribution, data = sub.local.data)
## Residuals:
##     Min      1Q  Median      3Q     Max
## -4.3790 -1.7535 -0.2369  1.8910  4.9463
## Coefficients:
##                     Estimate Std. Error t value
## (Intercept)           4.13974    1.19823   3.455
## log10(lizard_richness)       0.61641    0.89466   0.689
## distributionMainland       0.30313    2.43508   0.124
## log10(lizard_richness):distributionMainland 0.01322    1.59708   0.008
## Pr(>|t|)
## (Intercept)            0.000927 ***
## log10(lizard_richness)       0.493045
## distributionMainland       0.901277
## log10(lizard_richness):distributionMainland 0.993419
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.487 on 72 degrees of freedom
## Multiple R-squared:  0.02089,   Adjusted R-squared: -0.01991
## F-statistic: 0.5121 on 3 and 72 DF,  p-value: 0.6752

model.sub3a<-  lm(niche_breadth_full~log10(lizard_richness)+distribution,sub.local.data)
summary(model.sub3a)

## Call:
## lm(formula = niche_breadth_full ~ log10(lizard_richness) + distribution, data = sub.local.data)
## Residuals:
##    Min     1Q Median     3Q    Max
## -4.380 -1.756 -0.236  1.891  4.941
##
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)              4.1346     1.0166   4.067 0.000119 ***
## log10(lizard_richness)   0.6206     0.7360   0.843 0.401908
## distributionMainland     0.3226     0.6270   0.515 0.608424
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.47 on 73 degrees of freedom
## Multiple R-squared:  0.02089,    Adjusted R-squared:  0.005936
## F-statistic: 0.7787 on 2 and 73 DF,  p-value: 0.4628

#phylogenetic
model.sub3phy<- pgls(niche_breadth_full~log10(lizard_richness)*distribution,comp.sub.local.data,lambda = "ML")

summary(model.sub3phy)

## Call:
## pgls(formula = niche_breadth_full ~ log10(lizard_richness) *
##     distribution, data = comp.sub.local.data, lambda = "ML")
##
## ## Residuals:
## ##     Min     1Q Median     3Q    Max
## -0.65559 -0.17282 -0.02628  0.12058  0.34436
##
## ## Branch length transformations:
## ## kappa [Fix] : 1.000
## lambda [ ML] : 0.527
##     lower bound : 0.000, p = 0.57267
##     upper bound : 1.000, p = 0.030078
##     95.0% CI : (NA, 0.991)
## delta [Fix] : 1.000
##
## ## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                  4.35433    1.51215  2.8796 0.005241 **
## log10(lizard_richness)                       0.38024    0.97474  0.3901
## distributionMainland                        0.85064    2.52627  0.3367
## log10(lizard_richness):distributionMainland -0.33285    1.66977 -0.1993
## Pr(>|t|)
## (Intercept)                                  0.005241 **
## log10(lizard_richness)                      0.697619
## distributionMainland                       0.737310
## log10(lizard_richness):distributionMainland 0.842560
## ---


### Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

### Residual standard error: 0.2178 on 72 degrees of freedom
### Multiple R-squared: 0.008806, Adjusted R-squared: -0.03249
### F-statistic: 0.2132 on 3 and 72 DF,  

```r
model.sub3aphy<- pgls(niche_breadth_full~log10(lizard_richness)+distribution, comp.sub.local.data, lambda = "ML")
summary(model.sub3aphy)
```

### Call:
```
pgLs(formula = niche_breadth_full ~ log10(lizard_richness) +
 distribution, data = comp.sub.local.data, lambda = "ML")
```

### Residuals:
```
 Min 1Q Median 3Q Max
-0.65805 -0.16889 -0.06265 0.07011 0.36621
```

### Branch length transformations:
```
kappa [Fix] : 1.000
lambda [ML] : 0.520
```
```
lower bound : 0.000, p = 0.59895
upper bound : 1.000, p = 0.028508
95.0% CI : (NA, 0.990)
delta [Fix] : 1.000
```

### Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.48616 1.34177 3.3435 0.001308 **
log10(lizard_richness) 0.27002 0.78813 0.3426 0.732878
distributionMainland 0.36546 0.67517 0.5413 0.589966
```
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

### Residual standard error: 0.2157 on 73 degrees of freedom
### Multiple R-squared: 0.008322, Adjusted R-squared: -0.01885
### F-statistic: 0.3063 on 2 and 73 DF,  

#full dataset

#non-phylogenetic
```
model.sub3<- lm(log_population_density~niche_breadth_full+distribution+log_study_area+log_mass,sub.local.data)
summary(model.sub3)
```

### Call:
```
lm(formula = log_population_density ~ niche_breadth_full + distribution +
 log_study_area + log_mass, data = sub.local.data)
```
## Residuals:
##      Min       1Q   Median       3Q      Max
## -1.53777 -0.64105  0.02481  0.50102  2.09982
##
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.73447    0.23591   7.352 2.64e-10 ***
## niche_breadth_full    0.08924    0.03695   2.415   0.0183 *
## distributionMainland -0.97639    0.18552 -5.263 1.44e-06 ***
## log_study_area       -0.41126    0.08841 -4.652 1.48e-05 ***
## log_mass              -0.64618    0.29925 -2.159  0.0342 *
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7649 on 71 degrees of freedom
## Multiple R-squared:  0.5597, Adjusted R-squared:  0.5349
## F-statistic: 22.56 on 4 and 71 DF,  p-value: 4.705e-12
#phylogenetic
model.sub2phy<- pgl(...
summary(model.sub2phy)
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06127 on 71 degrees of freedom
Multiple R-squared: 0.4785, Adjusted R-squared: 0.4492
F-statistic: 16.29 on 4 and 71 DF, p-value: 1.646e-09

#clumped dataset
#non-phylogenetic
model.sub3.1 <- lm(log_population_density ~ niche_breadth_clumped + distribution + log_study_area + log_mass, sub.local.data)
summary(model.sub3.1)

# Call:
# lm(formula = log_population_density ~ niche_breadth_clumped +
#     distribution + log_study_area + log_mass, data = sub.local.data)
#
# Residuals:
#    Min     1Q Median     3Q    Max
# -1.62388 -0.43015  0.06232  0.53376  1.87466
#
# Coefficients:
#                     Estimate Std. Error   t value   Pr(>|t|)
# (Intercept)        2.65411    0.34274   7.744  4.99e-11 ***
# niche_breadth_clumped  -0.33121    0.19497  -1.699    0.0937 .
# distributionMainland   -0.98956    0.19243  -5.142   2.30e-06 ***
# log_study_area        -0.43855    0.08903  -4.926   5.29e-06 ***
# log_mass              -0.44665    0.33767  -1.323    0.1902
#
# Residual. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.78 on 71 degrees of freedom
Multiple R-squared: 0.5421, Adjusted R-squared: 0.5163
F-statistic: 21.02 on 4 and 71 DF, p-value: 1.83e-11

#phylogenetic
model.sub2.1phy <- pgls(log_population_density ~ niche_breadth_clumped +
                         distribution + log_study_area + log_mass, comp.sub.local.data, lambda = "ML")
summary(model.sub2.1phy)

# Call:
# pgls(formula = log_population_density ~ niche_breadth_clumped +
#       distribution + log_study_area + log_mass, data = comp.sub.local.data, lambda = "ML")
#
# Residuals:
#    Min     1Q Median     3Q    Max
# -0.156014 -0.039934 -0.004197  0.036897  0.130192
#
# Branch length transformations:
kappa [Fix] : 1.000
lambda [ ML] : 0.328
lower bound : 0.000, p = 0.25924
upper bound : 1.000, p = 1.0996e-05
95.0% CI : (NA, 0.803)
delta [Fix] : 1.000

Coefficients:

|                         | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------------------|----------|------------|---------|----------|
| (Intercept)             | 2.237861 | 0.389174   | 5.7503  | 2.075e-07 *** |
| niche_breadth_clumped   | -0.196489| 0.190579   | -1.0310 | 0.3060335 |
| distributionMainland    | -0.789916| 0.205128   | -3.8508 | 0.0002551 *** |
| log_study_area          | -0.448341| 0.088605   | -5.0600 | 3.165e-06 *** |
| log_mass                | -0.352011| 0.345560   | -1.0187 | 0.3118194 |

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.063 on 71 degrees of freedom
Multiple R-squared: 0.4466, Adjusted R-squared: 0.4154
F-statistic: 14.33 on 4 and 71 DF, p-value: 1.271e-08

#lizard richness
#clumped dataset
#non-phylogenetic
model.sub3.1<- lm(niche_breadth_clumped~log10(lizard_richness)*distribution,sub.local.data)
summary(model.sub3.1)

# Call:
# lm(formula = niche_breadth_clumped ~ log10(lizard_richness) * distribution, data = sub.local.data)

# Residuals:
# Min  1Q Median  3Q Max
# -0.58913 -0.29999 -0.15541 0.09562 2.34931

# Coefficients:
#                         Estimate Std. Error t value Pr(>|t|)
# (Intercept)             1.62786   0.25523  6.378 1.52e-08 ***
# log10(lizard_richness)  -0.04059   0.19057 -0.213
# distributionMainland   -0.90607   0.51869 -1.747
# log10(lizard_richness):distributionMainland 0.42934   0.34019  1.262
# Pr(>|t|)
# (Intercept)             1.52e-08 ***
# log10(lizard_richness)  0.8319
# distributionMainland   0.0849 .
# log10(lizard_richness):distributionMainland 0.2110
# ---
model.sub3.1a<- lm(niche_breadth_clumped~log10(lizard_richness)+distribution, sub.local.data)
summary(model.sub3.1a)

model.sub3.1phy<- pglss(niche_breadth_clumped~log10(lizard_richness)*distribution,comp.sub.local.data, lambda = "ML")
summary(model.sub3.1phy)
## 95.0% CI : (NA, 0.750)
## delta [Fix] : 1.000

## Coefficients:
##                  Estimate Std. Error t value
## (Intercept)      1.702477   0.300982  5.6564
## log10(lizard_richness) -0.051065   0.202317 -0.2524
## distributionMainland -0.733769   0.530999 -1.3819
## log10(lizard_richness):distributionMainland  0.276698   0.350709  0.7890
##                  Pr(>|t|)
## (Intercept)       2.93e-07 ***
## log10(lizard_richness)       0.8014
## distributionMainland       0.1713
## log10(lizard_richness):distributionMainland       0.4327
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 0.04346 on 72 degrees of freedom
## Multiple R-squared: 0.08267, Adjusted R-squared: 0.04445
## F-statistic: 2.163 on 3 and 72 DF,  p-value: 0.09983

model.sub3.1aphy<- pgls(niche_breadth_clumped~log10(lizard_richness)+distribution,comp.sub.local.data,lambda = "ML")
summary(model.sub3.1aphy)

## Call:
## pgls(formula = niche_breadth_clumped ~ log10(lizard_richness) +
##     distribution, data = comp.sub.local.data, lambda = "ML")

## Residuals:
##    Min     1Q Median     3Q    Max
## -0.117768 -0.028916 -0.002979  0.030070  0.094204

## Branch length transformations:
## kappa [Fix] : 1.000
## lambda [ ML] : 0.424
##      lower bound : 0.000, p = 0.087964
##      upper bound : 1.000, p = 1.6754e-08
##   95.0% CI : (NA, 0.762)
## delta [Fix] : 1.000

## Coefficients:
##                  Estimate Std. Error t value  Pr(>|t|)
## (Intercept)      1.602058   0.271338  5.9043 1.034e-07 ***
## log10(lizard_richness)  0.036974   0.165397  0.2235   0.82373
## distributionMainland -0.332745   0.141131 -2.3577   0.02107 *
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.04391 on 73 degrees of freedom
## Multiple R-squared: 0.07567, Adjusted R-squared: 0.05034
## F-statistic: 2.988 on 2 and 73 DF,  p-value: 0.05659

# predator richness
# full dataset
# non-phylogenetic

model.sub4<- lm(niche_breadth_full~log10(predator_richness)*distribution,sub.local.data)
summary(model.sub4)

## Call:
## lm(formula = niche_breadth_full ~ log10(predator_richness) *
## distribution, data = sub.local.data)
##
## Residuals:
##     Min      1Q  Median  3Q     Max
## -4.4367 -1.8789 -0.2427  1.8933  4.9158
##
## Coefficients:
##                         Estimate  Std. Error   t value
## (Intercept)            2.0461     2.783   0.735   0.465
## log10(predator_richness) 1.5717     1.511   1.041   0.302
## distributionMainland      4.0074     4.331   0.925   0.358
## log10(predator_richness):distributionMainland -1.8275     2.032  -0.899   0.372
##
## Residual standard error: 2.48 on 72 degrees of freedom
## Multiple R-squared:  0.02647,    Adjusted R-squared: -0.01409
## F-statistic: 0.6526 on 3 and 72 DF,  p-value: 0.5839

model.sub4a<- lm(niche_breadth_full~log10(predator_richness)+distribution,sub.local.data)
summary(model.sub4a)

## Call:
## lm(formula = niche_breadth_full ~ log10(predator_richness) +
## distribution, data = sub.local.data)
##
## Residuals:
##     Min      1Q  Median  3Q     Max
## -4.4591 -2.0197 -0.2996  1.9561  4.6932
##
## Coefficients:
## Model Summary

|                | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | 3.8827   | 1.8882     | 2.056   | 0.0433  *|
| log10(predator_richness) | 0.5626   | 1.0090     | 0.558   | 0.5789  |
| distributionMainland | 0.1883   | 0.8430     | 0.223   | 0.8239  |

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.477 on 73 degrees of freedom
Multiple R-squared: 0.01555, Adjusted R-squared: -0.01142
F-statistic: 0.5764 on 2 and 73 DF, p-value: 0.5644

# Phylogenetic Model

```r
model.sub4phy <- pgls(niche_breadth_full ~ log10(predator_richness) * distribution, comp.sub.local.data, lambda = "ML")
summary(model.sub4phy)
```

## Model Call

```
Call:
pgLs(formula = niche_breadth_full ~ log10(predator_richness) * distribution, data = comp.sub.local.data, lambda = "ML")
```

## Residuals

```
 Min 1Q Median 3Q Max
-0.69508 -0.15122 -0.00788 0.09518 0.54953
```

## Branch Length Transformations

```
kappa [Fix] : 1.000
lambda [ML] : 0.489
 lower bound : 0.000, p = 0.51158
 upper bound : 1.000, p = 0.021578
 95.0% CI : (NA, 0.983)
delta [Fix] : 1.000
```

## Coefficients

```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.56113 2.88835 0.8867
log10(predator_richness) 1.24346 1.50657 0.8254
distributionMainland 2.08422 4.79961 0.4342
log10(predator_richness):distributionMainland -0.98246 2.17650 -0.4514
```

Residual standard error: 0.2135 on 72 degrees of freedom
Multiple R-squared: 0.0163, Adjusted R-squared: -0.02468
F-statistic: 0.3978 on 3 and 72 DF, p-value: 0.755
model.sub4aphy <- pgls(niche_breadth_full ~ \texttt{log10}(\texttt{predator\_richness}) + \texttt{distribution}, data = \texttt{comp.sub.local.data}, lambda = "ML")
summary(model.sub4aphy)

##
## Call:
## pgls(formula = niche_breadth_full ~ log10(predator_richness) +
##    distribution, data = comp.sub.local.data, lambda = "ML")
##
## Residuals:
##      Min       1Q   Median       3Q      Max
## -0.66110 -0.16576 -0.02108  0.11411  0.32757
##
## Branch length transformations:
##
## kappa [Fix]  : 1.000
## lambda [ ML]  : 0.530
##    lower bound : 0.000, p = 0.30038
##    upper bound : 1.000, p = 0.023627
##    95.0% CI   : (NA, 0.986)
## delta [Fix]  : 1.000
##
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)               3.349120  2.308709  1.4506   0.1512
## log10(predator_richness)  0.806635   1.160249  0.6952   0.4891
## distributionMainland     -0.041696   0.943420 -0.0442   0.9649
##
## Residual standard error: 0.2161 on 73 degrees of freedom
## Multiple R-squared: 0.01322, Adjusted R-squared: -0.01382
## F-statistic: 0.4889 on 2 and 73 DF,  p-value: 0.6153

#clumped dataset
#non-phylogenetic
model.sub4.1 <- lm(niche_breadth_clumped ~ \texttt{log10}(\texttt{predator\_richness})*\texttt{distribution}, data = \texttt{sub.local.data})
summary(model.sub4.1)

##
## Call:
## lm(formula = niche_breadth_clumped ~ log10(predator_richness) *
##    distribution, data = sub.local.data)
##
## Residuals:
##      Min       1Q   Median       3Q      Max
## -0.68479 -0.32820 -0.16103  0.08784  2.37705
##
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)                2.3571     0.5953   3.959 0.00021 **
## log10(predator_richness)  1.1009     0.5507  2.000 0.04969 *
## distributionMainland     -0.0416     0.9434 -0.044 0.96490

#delta
```
log10(predator_richness) -0.4287 0.3231 -1.327
distributionMainland -0.9984 0.9264 -1.078
log10(predator_richness):distributionMainland 0.4190 0.4346 0.964
(Intercept) Pr(>|t|)
0.000175 ***
log10(predator_richness) 0.188813
distributionMainland 0.284733
log10(predator_richness):distributionMainland 0.338243

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5304 on 72 degrees of freedom
Multiple R-squared: 0.07207, Adjusted R-squared: 0.03341
F-statistic: 1.864 on 3 and 72 DF, p-value: 0.1434
```

```r
model.sub4.1a <- lm(niche_breadth_clumped ~ log10(predator_richness) + distribution, sub.local.data)
summary(model.sub4.1a)
```

```
Call:
lm(formula = niche_breadth_clumped ~ log10(predator_richness) + distribution, data = sub.local.data)
Residuals:
Min 1Q Median 3Q Max
-0.6268 -0.2899 -0.1816 0.1563 2.4189
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9358 0.4042 4.789 8.53e-06 ***
log10(predator_richness) -0.1971 0.2160 -0.912 0.365
distributionMainland -0.1225 0.1805 -0.679 0.500

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5301 on 73 degrees of freedom
Multiple R-squared: 0.06009, Adjusted R-squared: 0.03431
F-statistic: 2.334 on 2 and 73 DF, p-value: 0.1041
```

```r
#phylogenetic
model.sub4.1phy <- pglsl(niche_breadth_clumped ~ log10(predator_richness) * distribution, comp.sub.local.data, lambda = "ML")
summary(model.sub4.1phy)
```

```
Call:
pglsl(formula = niche_breadth_clumped ~ log10(predator_richness) * distribution, data = comp.sub.local.data, lambda = "ML")
Residuals:
```
## Branch length transformations:
#
## kappa [Fix] : 1.000
## lambda [ ML] : 0.429
##     lower bound : 0.000, p = 0.082812
##     upper bound : 1.000, p = 1.73e-08
##    95.0% CI   : (NA, 0.767)
## delta [Fix]  : 1.000
##
## Coefficients:
##
<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.36941</td>
<td>0.60384</td>
<td>3.9239</td>
</tr>
<tr>
<td>log10(predator_richness)</td>
<td>-0.39424</td>
<td>0.31676</td>
<td>-1.2446</td>
</tr>
<tr>
<td>distributionMainland</td>
<td>-0.99877</td>
<td>1.00010</td>
<td>-0.9987</td>
</tr>
<tr>
<td>log10(predator_richness):distributionMainland</td>
<td>0.37653</td>
<td>0.45461</td>
<td>0.8283</td>
</tr>
</tbody>
</table>
##
| Pr(>|t|)                | 0.0001971*** |
| log10(predator_richness) | 0.2173171 |
| distributionMainland   | 0.3212980 |
| log10(predator_richness):distributionMainland | 0.4102656 |
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04384 on 72 degrees of freedom
## Multiple R-squared: 0.09465, Adjusted R-squared: 0.05693
## F-statistic: 2.509 on 3 and 72 DF,  p-value: 0.06554

model.sub4.1aphy<- pgls(niche_breadth_clumped~\texttt{log10}(predator_richness)+distribution,comp.sub.local.data,lambda = "ML")
summary(model.sub4.1aphy)
## delta [Fix] : 1.000
##
## Coefficients:
##                      Estimate Std. Error t value  Pr(>|t|)  
## (Intercept)            2.06197    0.47494  4.3416 4.483e-05 ***  
## log10(predator_richness) -0.22512    0.24155 -0.9320    0.3544  
## distributionMainland   -0.18708    0.19631 -0.9529    0.3438  
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04384 on 73 degrees of freedom
## Multiple R-squared: 0.0862,  Adjusted R-squared: 0.06116  
## F-statistic: 3.443 on 2 and 73 DF,  p-value: 0.03725  

Compare the niche breadth between islands and the mainland

```r
#using sub data
#full dataset
#non-phylogenetic
model.sub1<- lm(niche_breadth_full~distribution,sub.diet.data)
summary(model.sub1)
```

## Call:
## lm(formula = niche_breadth_full ~ distribution, data = sub.diet.data)
##
## Residuals:  
##    Min     1Q   Median     3Q    Max  
## -3.9807 -2.1231 -0.3469  2.0062  5.2793  
##
## Coefficients:  
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            4.5931     0.4314 10.647   <2e-16 ***  
## distributionMainland   0.4075     0.5445  0.748    0.456  
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.552 on 92 degrees of freedom
## Multiple R-squared:  0.006051,   Adjusted R-squared: 0.004753  
## F-statistic: 0.5601 on 1 and 92 DF,  p-value: 0.4561  

```r
#phylogenetic
model.sub1.phy<- pgls(niche_breadth_full~distribution,comp.sub.diet, lambda="ML")
summary(model.sub1.phy)
```

## Call:  
## pgls(formula = niche_breadth_full ~ distribution, data = comp.sub.diet,  
##      lambda = "ML")
##
#### Residual standard error: 2.552 on 92 degrees of freedom
## Multiple R-squared:  0.006051,   Adjusted R-squared: -0.004753  
## F-statistic: 0.5601 on 1 and 92 DF,  p-value: 0.4561
## Residuals:
## Min       1Q   Median       3Q      Max
## -0.62715 -0.11602  0.00569  0.17877  0.80524
##
## Branch length transformations:
## kappa [Fix] : 1.000
## lambda [ML] : 0.746
##    lower bound : 0.000, p = 0.020806
##    upper bound : 1.000, p = 0.054859
##    95.0% CI   : (0.133, NA)
## delta [Fix] : 1.000
##
## Coefficients:
##                      Estimate Std. Error t value  Pr(>|t|)
## (Intercept)           4.25631    1.10253  3.8605 0.0002101 ***
## distributionMainland  0.50559    0.59109  0.8554 0.3945744
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2485 on 92 degrees of freedom
## Multiple R-squared:  0.00789, Adjusted R-squared:  0.002894
## F-statistic: 0.7316 on 1 and 92 DF,  p-value: 0.3946

#clumped dataset
#non-phylogenetic
model.sub1.1<- lm(niche_breadth_clumped~distribution,sub.diet.data)
summary(model.sub1.1)

## Call:
## lm(formula = niche_breadth_clumped ~ distribution, data = sub.diet.data)
##
## Residuals:
## Min       1Q   Median       3Q      Max
## -0.52000 -0.29898 -0.15398  0.09852  2.41102
##
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.52000    0.08422  18.047   <2e-16 ***
## distributionMainland  0.22102    0.10631   2.079   0.0404 *
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4983 on 92 degrees of freedom
## Multiple R-squared:  0.04487, Adjusted R-squared:  0.03449
## F-statistic: 4.322 on 1 and 92 DF,  p-value: 0.0404

#phylogenetic
model.sub1.1.phy<- pglsl(niche_breadth_clumped~distribution,comp.sub.diet, lam
bda="ML")
summary(model.sub1.1.phy)

## Call:
## pgls(formula = niche_breadth_clumped ~ distribution, data = comp.sub.diet,
##      lambda = "ML")
##
## Residuals:
##              Min       1Q   Median       3Q      Max
## -0.114676 -0.017458  0.001844  0.030235  0.093809
##
## Branch length transformations:
##
## kappa  [Fix]  : 1.000
## lambda [ ML]  : 0.306
##    lower bound : 0.000, p = 0.13356
##    upper bound : 1.000, p = 1.9607e-11
##    95.0% CI   : (NA, 0.654)
## delta  [Fix]  : 1.000
##
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.56150   0.14054  11.111  < 2e-16 ***
## distributionMainland -0.26116   0.11104  -2.352  0.02081 *
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03998 on 92 degrees of freedom
## Multiple R-squared: 0.05672, Adjusted R-squared: 0.04646
## F-statistic: 5.532 on 1 and 92 DF,  p-value: 0.02081

#using all data
#full dataset
#non-phylogenetic
model.sub1<- lm(niche_breadth_full~distribution,diet.data)
summary(model.sub1)

## Call:
## lm(formula = niche_breadth_full ~ distribution, data = diet.data)
##
## Residuals:
##              Min       1Q   Median       3Q      Max
## -3.9807 -2.1231 -0.3469  2.0062  5.2793
##
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            4.5931    0.4314 10.647  < 2e-16 ***
## distributionMainland -0.4075    0.5445  0.748    0.456
#phylogenetic
model.sub1.phy<- pgl(s(niche_breadth_full~distribution,comp.diet2, lambda="ML")
summary(model.sub1.phy)

#clumped dataset
#non-phylogenetic
model.sub1.1<- lm(niche_breadth_clumped~distribution,diet.data)
summary(model.sub1.1)
## Min       1Q   Median       3Q      Max
## -0.52000 -0.29898 -0.15398  0.09852  2.41102
##
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.52000    0.08422  18.047   <2e-16 ***
## distributionMainland -0.22102    0.10631  -2.079   0.0404 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4983 on 92 degrees of freedom
## Multiple R-squared:  0.04487,    Adjusted R-squared:  0.03449
## F-statistic: 4.322 on 1 and 92 DF,  p-value: 0.0404

#phylogenetic
model.sub1.1.phy<- pglsl(niche_breadth_clumped~distribution,comp.diet2, lambda ="ML")
summary(model.sub1.1.phy)

##
## Call:
## pglsl(formula = niche_breadth_clumped ~ distribution, data = comp.diet2, lambda = "ML")
##
## Residuals:
##       Min        1Q    Median        3Q       Max
## -0.114676 -0.017458  0.001844  0.030235  0.093809
##
## Branch length transformations:
##
## kappa [Fix]  : 1.000
## lambda [ ML]  : 0.306
##    lower bound : 0.000, p = 0.13356
##    upper bound : 1.000, p = 1.9607e-11
##    95.0% CI   : (NA, 0.654)
## delta [Fix]  : 1.000
##
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.56150    0.14054  11.111  < 2e-16 ***
## distributionMainland -0.26116    0.11104  -2.352  0.02081 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03998 on 92 degrees of freedom
## Multiple R-squared: 0.05672, Adjusted R-squared: 0.04646
## F-statistic: 5.532 on 1 and 92 DF,  p-value: 0.02081
Conclusion: The results are quantitatively different, thus we will use the sub data that has species with number of stomachs 9 or larger.

Test the data for various patterns by comparing islands and the mainland.

**Compare population density**

*Non-phylogenetic*

```r
model.d <- lm(log_population_density ~ distribution + log_study_area + log_mass, sub.diet.data)
summary(model.d)
```

```r
data.frame(
 call = "lm(formula = log_population_density ~ distribution + log_study_area + log_mass, data = sub.diet.data)",
 residuals = data.frame(
 Min = -1.68571, 1Q = -0.59632, Median = 0.04558, 3Q = 0.62029, Max = 1.89981),
 coefficients = data.frame(
 Estimate = c(2.16604, -0.98099, -0.45041, -0.72299),
 Std. Error = c(0.15634, 0.17429, 0.08192, 0.27634),
 t value = c(13.855, -5.629, -5.498, -2.616),
 Pr(>|t|) = c(< 2e-16, 2.04e-07, 3.55e-07, 0.0104)
)
)
```

```r
Call:
lm(formula = log_population_density ~ distribution + log_study_area +
log_mass, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-1.6857 -0.5963 0.0456 0.6203 1.8998
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.16604 0.15634 13.855 < 2e-16 ***
distributionMainland -0.98099 0.17429 -5.629 2.04e-07 ***
log_study_area -0.45041 0.08192 -5.498 3.55e-07 ***
log_mass -0.72299 0.27634 -2.616 0.0104 *
##

Signif. codes:
*** 0.001 *** 0.01 '**' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.7802 on 90 degrees of freedom
Multiple R-squared: 0.5374, Adjusted R-squared: 0.522
F-statistic: 34.85 on 3 and 90 DF, p-value: 4.843e-15
```

*Phylogenetic*

```r
model.d.phy <- pgls(log_population_density ~ distribution + log_study_area + log_mass, data = comp.sub.diet, lambda = "ML")
summary(model.d.phy)
```

```r
data.frame(
 call = "pgls(formula = log_population_density ~ distribution + log_study_area + log_mass, data = comp.sub.diet, lambda = "ML")",
 residuals = data.frame(
 Min = -0.10264, 1Q = -0.04730, Median = -0.01489, 3Q = 0.03004, Max = 0.14908),
 branch_length_transforms = data.frame()
)
```

```r
Call:
pgls(formula = log_population_density ~ distribution + log_study_area +
log_mass, data = comp.sub.diet, lambda = "ML")
##
Residuals:
Min 1Q Median 3Q Max
-0.1026 -0.0473 -0.0149 0.0300 0.1491
##
Branch length transformations:
```
## kappa [Fix] : 1.000
## lambda [ ML] : 0.102
##    lower bound : 0.000, p = 0.32987
##    upper bound : 1.000, p = 9.5837e-10
##    95.0% CI   : (NA, 0.489)
## delta [Fix]  : 1.000

## Coefficients:

|                      | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept)          | 2.097491 | 0.189713   | 11.0561 | < 2.2e-16 *** |
| distributionMainland | -0.942502| 0.177814   | -5.3005 | 8.163e-07 *** |
| log_study_area       | -0.451057| 0.081304   | -5.5478 | 2.878e-07 *** |
| log_mass             | -0.708543| 0.284725   | -2.4885 | 0.01467 *   |

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 0.05989 on 90 degrees of freedom
## Multiple R-squared: 0.5166, Adjusted R-squared: 0.5004
## F-statistic: 32.06 on 3 and 90 DF,  p-value: 3.458e-14

**Compare predators richness**

model.p<- `lm(log10(predator_richness)~distribution,sub.diet.data)`
summary(model.p)

## Call:
## lm(formula = log10(predator_richness) ~ distribution, data = sub.diet.data )
##
## ## Residuals:
## ##   Min     1Q Median     3Q    Max
## <-0.94790 -0.24003 -0.00154  0.24548  0.51773
##
## ## Coefficients:
## ##                      Estimate Std. Error t value Pr(>|t|)
## ## (Intercept)           1.82271    0.05449  33.452  < 2e-16 ***
## ## distributionMainland  0.58759    0.06878   8.544  8.544 2.64e-13 ***
##
## ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ## Residual standard error: 0.3224 on 92 degrees of freedom
## Multiple R-squared: 0.4424, Adjusted R-squared: 0.4363
## F-statistic: 72.99 on 1 and 92 DF,  p-value: 2.638e-13

**Compare lizard richness**

model.l<- `lm(log10(lizard_richness)~distribution,sub.diet.data)`
summary(model.l)
```r
Call:
lm(formula = log10(lizard_richness) ~ distribution, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-1.21453 -0.26029 0.03788 0.28893 0.59838
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.21453 0.06696 18.138 < 2e-16 ***
distributionMainland 0.32768 0.08452 3.877 0.000198 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.3962 on 92 degrees of freedom
Multiple R-squared: 0.1404, Adjusted R-squared: 0.1311
F-statistic: 15.03 on 1 and 92 DF, p-value: 0.0001983

Compare the relationship between population density and niche breadth
#full dataset
#non-phylogenetic

model.sub3 <- lm(log_population_density ~ niche_breadth_full + distribution + log_study_area + log_mass, sub.diet.data)
summary(model.sub3)

Call:
lm(formula = log_population_density ~ niche_breadth_full + distribution +
log_study_area + log_mass, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-1.59377 -0.63756 0.03951 0.54098 2.07267
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.83647 0.20787 8.835 8.26e-14 ***
niche_breadth_full 0.07443 0.03187 2.335 0.0218 *
distributionMainland -1.02157 0.17102 -5.973 4.69e-08 ***
log_study_area -0.42640 0.08062 -5.289 8.72e-07 ***
log_mass -0.64095 0.27203 -2.356 0.0207 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.7616 on 89 degrees of freedom
Multiple R-squared: 0.5641, Adjusted R-squared: 0.5445
F-statistic: 28.8 on 4 and 89 DF, p-value: 2.335e-15```
model.sub2phy <- pgls(log_population_density~niche_breadth_full+distribution+log_study_area+log_mass, comp.sub.diet, lambda = "ML")
summary(model.sub2phy)

##
Call:
pgls(formula = log_population_density ~ niche_breadth_full +
distribution + log_study_area + log_mass, data = comp.sub.diet,
lambda = "ML")
##
Residuals:
Min 1Q Median 3Q Max
-0.097319 -0.050435 -0.007344 0.031500 0.143261
##
Branch length transformations:
##
kappa [Fix] : 1.000
lambda [ML] : 0.100
lower bound : 0.000, p = 0.31624
upper bound : 1.000, p = 1.3313e-10
95.0% CI : (NA, 0.469)
delta [Fix] : 1.000
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.775628 0.230162 7.7147 1.666e-11 ***
niche_breadth_full 0.074487 0.031739 2.3469 0.02115 *
distributionMainland -0.983112 0.174285 -5.6408 1.977e-07 ***
log_study_area -0.428539 0.079923 5.3617 6.440e-07 ***
log_mass -0.633213 0.279571 2.2649 0.02594 *
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.05843 on 89 degrees of freedom
Multiple R-squared: 0.5451, Adjusted R-squared: 0.5247
F-statistic: 26.67 on 4 and 89 DF, p-value: 1.507e-14

#clumped dataset
#non-phylogenetic)
model.sub3.1 <- lm(log_population_density~niche_breadth_clumped+distribution+log_study_area+log_mass, sub.diet.data)
summary(model.sub3.1)

##
Call:
lm(formula = log_population_density ~ niche_breadth_clumped +
distribution + log_study_area + log_mass, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-1.61081 -0.56983 0.09027 0.59670 1.90237
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.52089 0.30659 8.222 1.52e-12 ***
niche_breadth_clumped -0.23990 0.17857 -1.343 0.1826
distributionMainland -1.03138 0.17752 -5.810 9.56e-08 ***
log_study_area -0.44394 0.08169 -5.434 4.75e-07 ***
log_mass -0.57238 0.29708 -1.927 0.0572 .
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.7768 on 89 degrees of freedom
Multiple R-squared: 0.5466, Adjusted R-squared: 0.5262
F-statistic: 26.83 on 4 and 89 DF, p-value: 1.307e-14

#phylogenetic
model.sub2.1phy <- pgl(s(log_population_density ~ niche_breadth_clumped + distribution + log_study_area + log_mass, comp.sub.diet, lambda = "ML")
summary(model.sub2.1phy)

Call:
pgl(s(formula = log_population_density ~ niche_breadth_clumped +
distribution + log_study_area + log_mass, data = comp.sub.diet,
lambda = "ML")
##
Residuals:
Min 1Q Median 3Q Max
-0.128652 0.038757 -0.008393 0.024265 0.145134
##
Branch length transformations:
kappa [Fix] : 1.000
lambda [ML] : 0.048
lower bound : 0.000, p = 0.5991
upper bound : 1.000, p = 1.5683e-09
95.0% CI : (NA, 0.435)
delta [Fix] : 1.000
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.429473 0.316482 7.6765 1.993e-11 ***
niche_breadth_clumped -0.204655 0.177759 -1.1513 0.25269
distributionMainland -1.003128 0.179687 -5.5826 2.535e-07 ***
log_study_area -0.444838 0.081499 -5.4582 4.294e-07 ***
log_mass -0.595395 0.301074 -1.9776 0.05107 .
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05936 on 89 degrees of freedom
Multiple R-squared: 0.5344, Adjusted R-squared: 0.5135
F-statistic: 25.54 on 4 and 89 DF, p-value: 4.18e-14

Compare lizard richness and niche breadth

full dataset
non-phylogenetic

model.sub3 <- lm(niche_breadth_full ~ log10(lizard_richness)*distribution, sub.diet.data)
summary(model.sub3)

Call:
lm(formula = niche_breadth_full ~ log10(lizard_richness) * distribution, data = sub.diet.data)

Residuals:

 Min 1Q Median 3Q Max
-4.2370 -2.0972 -0.0028 1.9299 6.1350

Coefficients:

 Estimate Std. Error t value
(Intercept) 3.8441 1.0693 3.595
log10(lizard_richness) 0.6167 0.8067 0.765
distributionMainland -1.8485 2.1446 -0.862
log10(lizard_richness):distributionMainland 1.3318 1.4346 0.928

Pr(>|t|)
(Intercept) 0.000529 ***
log10(lizard_richness) 0.446556
distributionMainland 0.391008
log10(lizard_richness):distributionMainland 0.355685

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.535 on 90 degrees of freedom
Multiple R-squared: 0.04103, Adjusted R-squared: 0.009062
F-statistic: 1.284 on 3 and 90 DF, p-value: 0.2849

model.sub3a <- lm(niche_breadth_full ~ log10(lizard_richness) + distribution, sub.diet.data)
summary(model.sub3a)
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------------|----------|------------|---------|----------|
| (Intercept) | 3.33264 | 0.91578 | 3.639 | 0.000454 *** |
| log10(lizard_richness) | 1.03785 | 0.66655 | 1.557 | 0.122933 |
| distributionMainland | 0.06745 | 0.58285 | 0.116 | 0.908119 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.533 on 91 degrees of freedom
Multiple R-squared: 0.03184, Adjusted R-squared: 0.01057

F-statistic: 1.497 on 2 and 91 DF, p-value: 0.2294

#phylogenetic

model.sub3phy<- pgls(niche_breadth_full~log10(lizard_richness)*distribution,comp.sub.diet,lambda = "ML")
summary(model.sub3phy)

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------------|----------|------------|---------|----------|
| (Intercept) | 4.2558043| 1.5210968 | 2.7979 | 0.006292 ** |
| log10(lizard_richness) | 0.0076099| 0.8838424 | 0.0086 | |
| distributionMainland | -1.3056769| 2.2288858 | -0.5858 | |
| log10(lizard_richness):distributionMainland | 1.1608212| 1.4759841| 0.7865 | |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.24 on 90 degrees of freedom
Multiple R-squared: 0.0175, Adjusted R-squared: -0.01525
F-statistic: 0.5345 on 3 and 90 DF, p-value: 0.6598

```r
model.sub3aphy <- pgls(niche_breadth_full ~ log10(lizard_richness) + distribution, comp.sub.diet, lambda = "ML")
summary(model.sub3aphy)
```

Call:
```
pgls(formula = niche_breadth_full ~ log10(lizard_richness) +
      distribution, data = comp.sub.diet, lambda = "ML")
```

Residuals:
```
Min 1Q Median 3Q Max
-0.65055 -0.16475 -0.01051  0.13693  0.64264
```

Branch length transformations:
```
  # kappa  [Fix]  : 1.000
  # lambda  [ ML]  : 0.728
  #    lower bound : 0.000, p = 0.075885
  #    upper bound : 1.000, p = 0.049361
  #    95.0% CI   : (NA, 1.000)
  # delta  [Fix]  : 1.000
```

Coefficients:
```
        Estimate Std. Error t value Pr(>|t|)
(Intercept)       3.77702    1.42652  2.6477 0.009552 **
log10(lizard_richness)  0.38351    0.73034  0.5251 0.600789
distributionMainland  0.39224    0.62664  0.6259 0.532919
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2463 on 91 degrees of freedom
Multiple R-squared: 0.01076, Adjusted R-squared: -0.01098
F-statistic: 0.4948 on 2 and 91 DF, p-value: 0.6113

#clumped dataset
#non-phylogenetic
model.sub3.1 <- lm(niche_breadth_clumped ~ log10(lizard_richness) * distribution, sub.diet.data)
summary(model.sub3.1)

```
## Call:
## lm(formula = niche_breadth_clumped ~ log10(lizard_richness) *
##     distribution, data = sub.diet.data)
##
## Residuals:
##      Min       1Q   Median       3Q      Max
##  -0.64264  -0.16475  -0.01051  0.13693  0.64264
```

```r
```
Model 1

Min 1Q Median 3Q Max
-0.5217 -0.2968 -0.1308 0.1012 2.3735

Coefficients:

<table>
<thead>
<tr>
<th>Estimate Std. Error t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
</tr>
<tr>
<td>log10(lizard_richness)</td>
</tr>
<tr>
<td>distributionMainland</td>
</tr>
<tr>
<td>log10(lizard_richness):distributionMainland</td>
</tr>
</tbody>
</table>

Pr(>|t|)

- 1.49e-10 ***
- 0.9852
- 0.0639 .
- 0.1948

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4968 on 90 degrees of freedom
Multiple R-squared: 0.07105, Adjusted R-squared: 0.04008
F-statistic: 2.294 on 3 and 90 DF, p-value: 0.08322

Model 2

```r
model.sub3.1a <- lm(niche_breadth_clumped ~ log10(lizard_richness) + distribution, data = sub.diet.data)
summary(model.sub3.1a)
```

Call:
```r
lm(formula = niche_breadth_clumped ~ log10(lizard_richness) + distribution, data = sub.diet.data)
```

Residuals:

Residual standard error: 0.4988 on 91 degrees of freedom
Multiple R-squared: 0.05343, Adjusted R-squared: 0.03263
F-statistic: 2.569 on 2 and 91 DF, p-value: 0.0822

phylogenetic
```r
model.sub3.1phy <- pgls(niche_breadth_clumped ~ log10(lizard_richness) * distribution, data = comp.sub.diet, lambda = "ML")
summary(model.sub3.1phy)
```
Call:
pgls(formula = niche_breadth_clumped ~ log10(lizard_richness) * distribution, data = comp.sub.diet, lambda = "ML")
##
Residuals:
Min 1Q Median 3Q Max
-0.118250 -0.008967 0.005928 0.034218 0.112781
##
Branch length transformations:
##
kappa [Fix] : 1.000
lambda [ML] : 0.252
lower bound : 0.000, p = 0.28845
upper bound : 1.000, p = 1.5175e-11
95.0% CI : (NA, 0.627)
delta [Fix] : 1.000
##
Coefficients:
Estimate Std. Error t value
(Intercept) 1.5564388 0.2433950 6.3947
log10(lizard_richness) -0.0029274 0.1672017 0.0175
distributionMainland -0.7103208 0.4290622 1.6555
log10(lizard_richness):distributionMainland 0.2951175 0.2859555 1.0320
##
Pr(>|t|)
(Intercept) 7.018e-09 ***
log10(lizard_richness) 0.9861
distributionMainland 0.1013
log10(lizard_richness):distributionMainland 0.3048
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.03946 on 90 degrees of freedom
Multiple R-squared: 0.0712, Adjusted R-squared: 0.04024
F-statistic: 2.3 on 3 and 90 DF, p-value: 0.08266

model.sub3.1aphy<- pgls(niche_breadth_clumped~log10(lizard_richness)+distribution,comp.sub.diet,lambda = "ML")
summary(model.sub3.1aphy)
kappa [Fix] : 1.000
lambda [ML] : 0.297
lower bound : 0.000, p = 0.1757
upper bound : 1.000, p = 2.5783e-11
95.0% CI : (NA, 0.652)
delta [Fix] : 1.000
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4485 0.2225 6.5101 4.029e-09 ***
log10(lizard_richness) 0.0907 0.1402 0.6472 0.51915
distributionMainland -0.2875 0.1189 -2.4190 0.01755 *
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.03999 on 91 degrees of freedom
Multiple R-squared: 0.06088, Adjusted R-squared: 0.04024
F-statistic: 2.95 on 2 and 91 DF, p-value: 0.05739

Compare predator richness and niche breadth

full dataset
non-phylogenetic
model.sub4<- lm(niche_breadth_full~log10(predator_richness)*distribution,sub.diet.data)
summary(model.sub4)

Call:
lm(formula = niche_breadth_full ~ log10(predator_richness) *
distribution, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-4.2994 -1.9804 -0.2872 2.1758 5.2829
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1356 2.5380 1.235 0.220
log10(predator_richness) 0.7996 1.3722 0.583 0.562
distributionMainland -1.1943 3.5739 -0.334 0.739
log10(predator_richness):distributionMainland 0.4696 1.7186 0.273
##
Residual standard error: 2.554 on 90 degrees of freedom
Multiple R-squared: 0.02601, Adjusted R-squared: -0.006456
F-statistic: 0.8011 on 3 and 90 DF, p-value: 0.4964

model.sub4a <- lm(niche_breadth_full ~ log10(predator_richness) + distribution, sub.diet.data)
summary(model.sub4a)

Call:
lm(formula = niche_breadth_full ~ log10(predator_richness) +
distribution, data = sub.diet.data)
#
Residuals:
Min 1Q Median 3Q Max
-4.2352 -1.9435 -0.3032 2.1383 5.2436
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.5899 1.5586 1.662 0.100
log10(predator_richness) 1.0990 0.8220 1.337 0.185
distributionMainland -0.2382 0.7261 -0.328 0.744
#
Residual standard error: 2.541 on 91 degrees of freedom
Multiple R-squared: 0.0252, Adjusted R-squared: 0.003778
F-statistic: 1.176 on 2 and 91 DF, p-value: 0.3131

phylogenetic
model.sub4phy <- pgls(niche_breadth_full ~ log10(predator_richness) * distribution,
 comp.sub.diet, lambda = "ML")
summary(model.sub4phy)

Call:
pgls(formula = niche_breadth_full ~ log10(predator_richness) *
distribution, data = comp.sub.diet, lambda = "ML")
#
Residuals:
Min 1Q Median 3Q Max
-0.72194 -0.13088 -0.00089 0.14421 0.64770
#
Branch length transformations:
#
kappa [Fix] : 1.000
lambda [ML] : 0.698
lower bound : 0.000, p = 0.051972
upper bound : 1.000, p = 0.049407
95.0% CI : (NA, 1.000)
delta [Fix] : 1.000
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
log10(predator_richness) 1.0998 0.8233 1.337 0.185
distributionMainland -0.2380 0.7261 -0.327 0.744
log10(predator_richness):distributionMainland
lower bound : 0.000, p = 0.051972
upper bound : 1.000, p = 0.049407
95.0% CI : (NA, 1.000)
model.sub4aphy <- pgls(niche_breadth_full ~ log10(predator_richness) + distribution, data = comp.sub.diet, lambda = "ML")
summary(model.sub4aphy)
model.sub4.1 <- lm(niche_breadth_clumped ~ log10(predator_richness) * distribution, data = sub.diet.data)
summary(model.sub4.1)

Call:
lm(formula = niche_breadth_clumped ~ log10(predator_richness) * distribution, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-0.61624 -0.29123 -0.15568 0.08309 2.38789

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2092 0.4945 4.468 2.29e-05 ***
log10(predator_richness) -0.3781 0.2673 -1.415 0.161
distributionMainland -1.1425 0.6963 -1.641 0.104
log10(predator_richness):distributionMainland 0.4745 0.3348 1.417 0.160
Pr(>|t|)
(Intercept) 2.29e-05 ***
log10(predator_richness) 0.161
distributionMainland 0.104
log10(predator_richness):distributionMainland 0.160

Signif. codes: < 0.001 '***' 0.001 '*' 0.01 '.' 0.1 ' ' 1
##
Residual standard error: 0.4977 on 90 degrees of freedom
Multiple R-squared: 0.06796, Adjusted R-squared: 0.03689
F-statistic: 2.187 on 3 and 90 DF, p-value: 0.09498

model.sub4.1a <- lm(niche_breadth_clumped ~ log10(predator_richness) + distribution, data = sub.diet.data)
summary(model.sub4.1a)

Call:
lm(formula = niche_breadth_clumped ~ log10(predator_richness) + distribution, data = sub.diet.data)
##
Residuals:
Min 1Q Median 3Q Max
-0.53925 -0.29819 -0.15759 0.08416 2.42917

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6579 0.30688 5.402 5.23e-07 ***
log10(predator_richness) -0.07565 0.16185 -0.467 0.641
distributionMainland -0.17657 0.14298 -1.235 0.220
Pr(>|t|)
(Intercept) 5.23e-07 ***
log10(predator_richness) 0.641
distributionMainland 0.220
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5004 on 91 degrees of freedom
Multiple R-squared: 0.04716, Adjusted R-squared: 0.02622
F-statistic: 2.252 on 2 and 91 DF, p-value: 0.111

```r
phylogenetic
model.sub4.1phy< - pgls(niche_breadth_clumped ~ log10(predator_richness) * distribution, comp.sub.diet, lambda = "ML")
summary(model.sub4.1phy)
```

```r
## Call:
## pgls(formula = niche_breadth_clumped ~ log10(predator_richness) *
##     distribution, data = comp.sub.diet, lambda = "ML")
##
## Residuals:
##        Min       1Q    Median       3Q      Max
## -0.119663  0.018772  0.003712  0.028319  0.096832
##
## Branch length transformations:
##
## kappa  [Fix]  : 1.000
## lambda  [ML]  : 0.312
##    lower bound : 0.000, p = 0.11236
##    upper bound : 1.000, p = 1.1866e-11
##    95.0% CI   : (NA, 0.658)
## delta  [Fix]  : 1.000
##
## Coefficients:
##                          Estimate Std. Error t value
## (Intercept)                2.31657    0.50581   4.5799
## log10(predator_richness)   -0.41090    0.26467  -1.5525
## distributionMainland      -1.13185    0.71582  -1.5812
## log10(predator_richness):distributionMainland  0.45825    0.33754   1.3576
##                          Pr(>|t|)
## (Intercept)                1.488e-05 ***
## log10(predator_richness)   0.1241
## distributionMainland      0.1173
## log10(predator_richness):distributionMainland  0.1780
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03994 on 90 degrees of freedom
## Multiple R-squared: 0.08226, Adjusted R-squared: 0.05167
## F-statistic: 2.689 on 3 and 90 DF,  p-value: 0.05106
```

```r
model.sub4.1aphy< - pgls(niche_breadth_clumped ~ log10(predator_richness) + distribution, comp.sub.diet, lambda = "ML")
summary(model.sub4.1aphy)
```
Call:
pgls(formula = niche_breadth_clumped ~ log10(predator_richness) +
 distribution, data = comp.sub.diet, lambda = "ML")

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>-0.118788</td>
<td>-0.018805</td>
<td>0.002205</td>
<td>0.025526</td>
<td>0.092838</td>
</tr>
</tbody>
</table>

Branch length transformations:

- kappa [Fix] : 1.000
- lambda [ML] : 0.324
- lower bound : 0.000, p = 0.10073
- upper bound : 1.000, p = 1.6262e-11
- 95.0% CI : (NA, 0.663)
- delta [Fix] : 1.000

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept) | 1.82458 | 0.35285 | 5.1709 | 1.374e-06 *** |
| log10(predator_richness) | -0.14293 | 0.17620 | -0.8112 | 0.4194 |
| distributionMainland | -0.18141 | 0.14980 | -1.2110 | 0.2290 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04029 on 91 degrees of freedom

Multiple R-squared: 0.06378, Adjusted R-squared: 0.04321

F-statistic: 3.1 on 2 and 91 DF, p-value: 0.04985